Galois actions on homotopy groups of algebraic varieties

被引:4
作者
Pridham, Jonathan P. [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
ADIC REPRESENTATIONS; FUNDAMENTAL GROUP;
D O I
10.2140/gt.2011.15.501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Galois actions on the l-adic schematic and Artin-Mazur homotopy groups of algebraic varieties. For proper varieties of good reduction over a local field K, we show that the l-adic schematic homotopy groups are mixed representations explicitly determined by the Galois action on cohomology of Weil sheaves, whenever l is not equal to the residue characteristic p of K. For quasiprojective varieties of good reduction, there is a similar characterisation involving the Gysin spectral sequence. When l=p, a slightly weaker result is proved by comparing the crystalline and p-adic schematic homotopy types. Under favourable conditions, a comparison theorem transfers all these descriptions to the Artin-Mazur homotopy groups pi(et)(n)(X-(K) over bar)circle times((Z) over cap)Q(l).
引用
收藏
页码:501 / 607
页数:107
相关论文
共 52 条
[1]  
[Anonymous], 1980, PRINCETON MATH SERIE
[2]  
ARTIN M, 1969, LECT NOTES MATH, V100
[3]  
Bousfield A.K., 1972, Lecture Notes in Math., V304
[4]  
Deligne P., 1982, Lecture Notes in Mathematics, V900
[5]  
Deligne P., 1971, PUBL MATH-PARIS, V40, P5, DOI 10.1007/BF02684692
[6]  
Deligne Pierre, 1980, I HAUTES ETUDES SCI, V52, P137
[7]  
Faltings G., 1989, ALGEBRAIC ANAL GEOME, P25
[9]  
FRIEDLANDER EM, 1982, ANN MATH STUDIES, V104
[10]  
Goerss Paul G., 1999, Progress in Mathematics, V174