The barycentric ratio as invariant of projective geometry

被引:0
作者
Erdnuess, Bastian [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, IPF, Englerstr 7, D-76131 Karlsruhe, Germany
[2] Fraunhofer Inst Optron Syst Tech & Bildauswertung, Fraunhoferstr 1, D-76131 Karlsruhe, Germany
关键词
Projective geometry; cross-ratio; projective invariants; barycentric ratio; camera position estimation; 3D point reconstruction;
D O I
10.1515/teme-2017-0014
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Geometric invariants help to focus on the main aspects of a geometric problem by hiding irrelevant information. The fundamental invariant of projective geometry is the cross-ratio, an invariant of four collinear points. It is of particular importance for the understanding and conception of the projective plane. All other projective invariants can be expressed in terms of cross-ratios but this does not depricate other invariants as they are still beneficial for the understanding of the projective geometry. This article provides a generalisation of the cross-ratio to point configurations in higher dimensional projective spaces. The central insight is that the ratio of barycentric coordinates is projectively invariant. This article discusses the properties of the invariant and shows applications to the estimation of the camera position and 3D point reconstruction.
引用
收藏
页码:479 / 492
页数:14
相关论文
共 11 条
  • [1] Abdel-Aziz YI, 1971, P S CLOS RANG PHOT, P1, DOI DOI 10.1080/10671188.1967.10616517
  • [2] [Anonymous], 1779, Ph.D. Pierres
  • [3] [Anonymous], 2001, Robotica, DOI DOI 10.1017/S0263574700223217
  • [4] Erdnuss B., 2016, FORUM BILDVERARBEITU, P125
  • [5] Farin G.E., 2013, Practical linear algebra: a geometry toolbox
  • [6] EPnP: An Accurate O(n) Solution to the PnP Problem
    Lepetit, Vincent
    Moreno-Noguer, Francesc
    Fua, Pascal
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 81 (02) : 155 - 166
  • [7] Mumford D., 1994, Geometric Invariant Theory
  • [8] MUNDY JL, 1992, ARTIF INT, P1
  • [9] QUAN L, 1995, IEEE T PATTERN ANAL, V17, P34
  • [10] RICHTERGEBERT J, 2009, GEOMETRIEKALKULE