Positive ground state solutions for an elliptic system with Hardy-Sobolev critical exponent growth

被引:1
作者
Guo, Zhenyu [1 ]
Zou, Wenming [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
LEAST-ENERGY SOLUTIONS; SCHRODINGER-EQUATIONS; EXISTENCE;
D O I
10.1063/1.5081794
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers a nonlinear elliptic system with Hardy-Sobolev critical exponent growth. Several existence results on the positive ground state solutions to the system are established under proper conditions. Published under license by AIP Publishing.
引用
收藏
页数:20
相关论文
共 19 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]  
Chen ZJ, 2015, T AM MATH SOC, V367, P3599
[4]   Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: higher dimensional case [J].
Chen, Zhijie ;
Zou, Wenming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) :423-467
[5]   Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent [J].
Chen, Zhijie ;
Zou, Wenming .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :515-551
[6]   Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity [J].
Felli, V ;
Terracini, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (03) :469-495
[7]   Existence results for elliptic problems with Hardy potential [J].
Ferrara, Massimiliano ;
Bisci, Giovanni Molica .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (07) :846-859
[8]   Hardy-Sobolev critical elliptic equations with boundary singularities [J].
Ghoussoub, N ;
Kang, XS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (06) :767-793
[9]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[10]   Ground states for a nonhomogeneous elliptic system involving Hardy-Sobolev critical exponents [J].
Guo, Zhenyu .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) :1053-1065