Integer-valued skew polynomials

被引:1
作者
Werner, Nicholas J. [1 ]
机构
[1] SUNY Coll Old Westbury, Dept Math Comp & Informat Sci, 223 Store Hill Rd, Old Westbury, NY 11568 USA
关键词
Integer-valued polynomial; skew polynomial; Ore extension; RINGS;
D O I
10.1142/S0219498821501140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a commutative integral domain D with field of fractions K, the ring of integer-valued polynomials on D is Int(D) = {f is an element of K[x] | f(a) is an element of Dfor all a is an element of D}. In this paper, we extend this construction to skew polynomial rings. Given an automorphism sigma of K, the skew polynomial ring K[x; sigma] consists of polynomials with coefficients from K, and with multiplication given by xa = sigma(a)x for all a is an element of K. We define Int(D; sigma) = {f is an element of K[x; sigma] | f(a) is an element of Dfor alla is an element of D}, which is the set of integer-valued skew polynomials on D. When sigma is not the identity, K[x; sigma] is noncommutative and evaluation behaves differently than it does for ordinary polynomials. Nevertheless, we are able to prove that Int(D; sigma) has a ring structure in many cases. We show how to produce elements of Int(D; sigma) and investigate its properties regarding localization and Noetherian conditions. Particular attention is paid to the case where D is a discrete valuation ring with finite residue field.
引用
收藏
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1997, American Mathematical Society Surveys and Monographs
[2]   POLYNOMIAL OVERRINGS OF Int(Z) [J].
Chabert, Jean-Luc ;
Peruginelli, Giulio .
JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (01) :1-28
[3]   The ring of integer valued polynomials on 2 x 2 matrices and its integral closure [J].
Evrard, S. ;
Johnson, K. .
JOURNAL OF ALGEBRA, 2015, 441 :660-677
[4]   Integer valued polynomials on lower triangular integer matrices [J].
Evrard, S. ;
Fares, Y. ;
Johnson, K. .
MONATSHEFTE FUR MATHEMATIK, 2013, 170 (02) :147-160
[5]  
Frisch S., 2010, ACTES CIRM, V2, P27
[6]   Polynomial functions on upper triangular matrix algebras [J].
Frisch, Sophie .
MONATSHEFTE FUR MATHEMATIK, 2017, 184 (02) :201-215
[7]   Integer-valued polynomials on algebras (vol 373, pg 414, 2013) [J].
Frisch, Sophie .
JOURNAL OF ALGEBRA, 2014, 412 :282-282
[8]   Integer-valued polynomials on algebras [J].
Frisch, Sophie .
JOURNAL OF ALGEBRA, 2013, 373 :414-425
[9]  
Goodearl K. R., 2004, INTRO NONCOMMUTATIVE, V61
[10]   Galois structure on integral valued polynomials [J].
Heidaryan, Bahar ;
Longo, Matteo ;
Peruginelli, Giulio .
JOURNAL OF NUMBER THEORY, 2017, 171 :198-212