Proper vertex-pancyclicity of edge-colored complete graphs without joint monochromatic triangles

被引:4
作者
Chen, Xiaozheng
Li, Xueliang [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Edge-colored graph; Proper cycle; Color degree; Properly vertex-pancyclicity; ALTERNATING CYCLES; PATHS; TRAILS;
D O I
10.1016/j.dam.2021.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an edge-colored graph (G, c), let d(c)(v) denote the number of colors on the edges incident with a vertex v of G and delta(c)(G) denote the minimum value of d(c)(v) over all vertices v is an element of V (G). A cycle of (G, c) is called proper if any two adjacent edges of the cycle have distinct colors. An edge-colored graph (G, c) on n >= 3 vertices is called properly vertex-pancyclic if each vertex of (G, c) is contained in a proper cycle of length l for every l with 3 <= l <= n. Fujita and Magnant conjectured that every edge-colored complete graph on n >= 3 vertices with delta(c)(G) >= n+1/2 is properly vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding an extra condition that (G, c) does not contain any monochromatic triangle. In this paper, we show that this conjecture is true if the edge-colored complete graph contain no joint monochromatic triangles. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 23 条
[1]   Paths and trails in edge-colored graphs [J].
Abouelaoualim, A. ;
Das, Kinkar Ch. ;
Faria, L. ;
Manoussakis, Y. ;
Martinhon, C. ;
Saad, R. .
THEORETICAL COMPUTER SCIENCE, 2008, 409 (03) :497-510
[2]  
Alon N, 1997, RANDOM STRUCT ALGOR, V11, P179, DOI 10.1002/(SICI)1098-2418(199709)11:2<179::AID-RSA5>3.0.CO
[3]  
2-P
[4]   Properly coloured Hamiltonian paths in edge-coloured complete graphs [J].
Bang-Jensen, J ;
Gutin, G ;
Yeo, A .
DISCRETE APPLIED MATHEMATICS, 1998, 82 (1-3) :247-250
[5]   Alternating cycles and trails in 2-edge-coloured complete multigraphs [J].
Bang-Jensen, J ;
Gutin, G .
DISCRETE MATHEMATICS, 1998, 188 (1-3) :61-72
[6]  
BOLLOBAS B, 1976, ISRAEL J MATH, V23, P126, DOI 10.1007/BF02756791
[7]   Exact approaches for the orderly colored longest path problem: Performance comparison [J].
Carrabs, Francesco ;
Cerulli, Raffaele ;
Felici, Giovanni ;
Singh, Gaurav .
COMPUTERS & OPERATIONS RESEARCH, 2019, 101 :275-284
[8]   The rainbow spanning forest problem [J].
Carrabs, Francesco ;
Cerrone, Carmine ;
Cerulli, Raffaele ;
Silvestri, Selene .
SOFT COMPUTING, 2018, 22 (08) :2765-2776
[9]   Proper vertex-pancyclicity of edge-colored complete graphs without monochromatic triangles [J].
Chen, Xiaozheng ;
Huang, Fei ;
Yuan, Jinjiang .
DISCRETE APPLIED MATHEMATICS, 2019, 265 :199-203
[10]  
Dirac G., 1952, Proc. Lond. Math. Soc., V2, P69, DOI DOI 10.1112/PLMS/S3-2.1.69