Coxeter and crystallographic arrangements are inductively free

被引:18
作者
Barakat, Mohamed [1 ]
Cuntz, Michael [1 ]
机构
[1] Univ Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
关键词
Arrangement of hyperplanes; Coxeter; Reflection; Inductively free;
D O I
10.1016/j.aim.2011.09.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the classification of finite Weyl groupoids we prove that crystallographic arrangements, a large subclass of the class of simplicial arrangements which was recently defined, are hereditarily inductively free. In particular, all crystallographic reflection arrangements are hereditarily inductively free, among them the arrangement of type E-8. With little extra work we prove that also all Coxeter arrangements are inductively free. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:691 / 709
页数:19
相关论文
共 12 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]  
[Anonymous], 2003, HOMALG PROJECT
[3]  
Barakat M., 2010, SOME CERTIFICATES IN
[4]   AN AXIOMATIC SETUP FOR ALGORITHMIC HOMOLOGICAL ALGEBRA AND AN ALTERNATIVE APPROACH TO LOCALIZATION [J].
Barakat, Mohamed ;
Lange-Hegermann, Markus .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (02) :269-293
[5]  
BOURBAKI N., 1968, GROUPES ALGEBRES LIE
[6]   Crystallographic arrangements: Weyl groupoids and simplicial arrangements [J].
Cuntz, M. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :734-744
[7]  
Cuntz M., 2010, ARXIV10085291V1
[8]  
GREUEL G.-M., 2009, SINGULAR 3 1 1 COMPU
[9]   FREE ARRANGEMENTS OF HYPERPLANES AND SUPERSOLVABLE LATTICES [J].
JAMBU, M ;
TERAO, H .
ADVANCES IN MATHEMATICS, 1984, 52 (03) :248-258
[10]   COXETER ARRANGEMENTS ARE HEREDITARILY FREE [J].
ORLIK, P ;
TERAO, H .
TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (03) :369-383