Modularity-based graph partitioning using conditional expected models

被引:13
作者
Chang, Yu-Teng [1 ]
Leahy, Richard M. [1 ]
Pantazis, Dimitrios [2 ]
机构
[1] Univ So Calif, Dept Elect Engn, Inst Signal & Image Proc, Los Angeles, CA 90089 USA
[2] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NETWORK; RESOLUTION; CLUSTERS;
D O I
10.1103/PhysRevE.85.016109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Modularity-based partitioning methods divide networks into modules by comparing their structure against random networks conditioned to have the same number of nodes, edges, and degree distribution. We propose a novel way to measure modularity and divide graphs, based on conditional probabilities of the edge strength of random networks. We provide closed-form solutions for the expected strength of an edge when it is conditioned on the degrees of the two neighboring nodes, or alternatively on the degrees of all nodes comprising the network. We analytically compute the expected network under the assumptions of Gaussian and Bernoulli distributions. When the Gaussian distribution assumption is violated, we prove that our expression is the best linear unbiased estimator. Finally, we investigate the performance of our conditional expected model in partitioning simulated and real-world networks.
引用
收藏
页数:17
相关论文
共 79 条
[1]  
Alexander-Bloch A. F., 2009, FRONT NEUROINFORMATI, V4, DOI 10.3389
[2]  
[Anonymous], 2009, SDM, DOI DOI 10.1137/1.9781611972795.84
[3]  
[Anonymous], 2001, Proceedings, DOI [DOI 10.1145/371920.372096, 10.1145/371920, DOI 10.1145/371920]
[4]  
[Anonymous], 2011, Graph spectra for complex networks
[5]  
[Anonymous], 2009, Frontiers in Neuroinformatics, DOI [10.3389/neuro.11.037.2009.eCollection2009, 10.3389/neuro.11.037.2009]
[6]  
[Anonymous], 1970, Bell System Technical Journal, DOI [10.1002/j.1538-7305.1970.tb01770.x, DOI 10.1002/J.1538-7305.1970.TB01770.X]
[7]   Sexual mixing patterns in the spread of gonococcal and chlamydial infections [J].
Aral, SO ;
Hughes, JP ;
Stoner, B ;
Whittington, W ;
Handsfield, HH ;
Anderson, RM ;
Holmes, KK .
AMERICAN JOURNAL OF PUBLIC HEALTH, 1999, 89 (06) :825-833
[8]   Analysis of the structure of complex networks at different resolution levels [J].
Arenas, A. ;
Fernandez, A. ;
Gomez, S. .
NEW JOURNAL OF PHYSICS, 2008, 10
[9]   A sober look at clustering stability [J].
Ben-David, Shai ;
von Luxburg, Ulrike ;
Pal, David .
LEARNING THEORY, PROCEEDINGS, 2006, 4005 :5-19
[10]   A nonparametric view of network models and Newman-Girvan and other modularities [J].
Bickel, Peter J. ;
Chen, Aiyou .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (50) :21068-21073