A probabilistic proof of the Rogers-Ramanujan identities

被引:25
作者
Fulman, J [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0024609301008207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic probability theory of conjugacy classes of the finite general groups leads to a probability measure on the set of all partitions of natural numbers. A simple method of understanding these measures in terms of Markov chains is given in this paper, leading to an elementary probabilistic proof of the Rogers-Ramanujan identities. This is compared with work on the uniform measure. The main case of Bailey's lemma is interpreted as finding eigenvectors of the transition matrix of a Markov chain. It is shown that the viewpoint of Markov chains extends to quivers.
引用
收藏
页码:397 / 407
页数:11
相关论文
共 41 条
[1]  
AMANUJAN S, 1919, MATH P CAMBRIDGE PHI, V19, P211
[2]  
ANDREWS G, 1986, Q SERIES THEIR DEV A
[3]  
Andrews G. E., 1976, ENCY MATH ITS APPL, V2
[4]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[5]   ANALYTIC GENERALIZATION OF ROGERS-RAMANUJAN IDENTITIES FOR ODD MODULI [J].
ANDREWS, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :4082-4085
[6]   An A2 Bailey lemma and Rogers-Ramanujan-type identities [J].
Andrews, GE ;
Schilling, A ;
Warnaar, SO .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (03) :677-702
[7]   MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) :267-283
[8]  
Bailey W N., 1948, Proc London Math Soc, V50, P1, DOI [DOI 10.1112/PLMS/S2-50.1.1, 10.1112/plms/s2-50.1.1]
[9]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[10]  
BERKOVICH A, 1998, ICM P 3 1998 BERL, V3, P163