A Tensor Subspace Representation-Based Method for Hyperspectral Image Denoising

被引:43
作者
Lin, Jie [1 ]
Huang, Ting-Zhu [1 ]
Zhao, Xi-Le [1 ]
Jiang, Tai-Xiang [2 ]
Zhuang, Lina [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Southwestern Univ Finance & Econ, FinTech Innovat Ctr, Sch Econ Informat Engn, Financial Intelligence & Financial Engn Res Key L, Chengdu 611130, Peoples R China
[3] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 09期
基金
中国国家自然科学基金;
关键词
Tensors; Gaussian noise; Computational modeling; Noise reduction; Minimization; Computational complexity; Hyperspectral imaging; Hyperspectral image (HSI) denoising; proximal alternating minimization (PAM); tensor singular value decomposition (t-SVD); tensor subspace representation (TenSR); PARAMETER SELECTION; RANK; MODEL; RESTORATION; ALGORITHMS; NONCONVEX;
D O I
10.1109/TGRS.2020.3032168
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In hyperspectral image (HSI) denoising, subspace-based denoising methods can reduce the computational complexity of the denoising algorithm. However, the existing matrix subspaces, which are generated by the unfolding matrix of the HSI tensor, cannot completely represent a tensor since the unfolding operation will destroy the tensor structure. To overcome this, we design a novel basis tensor that is directly learned from the original tensor and present a tensor subspace representation (TenSR), which is a more authentic representation for delivering the intrinsic structure of the tensor than a matrix subspace representation. Equipped with the TenSR, we then propose a TenSR-based HSI denoising (TenSRDe) model, which simultaneously considers the low-tubal rankness of the HSI tensor and the nonlocal self-similarity of the coefficient tensor. Moreover, we develop an efficient proximal alternating minimization (PAM) algorithm to solve the proposed nonconvex model and theoretically prove that the algorithm globally converges to a critical point. Experiments implemented on simulated and real data sets substantiate the denoising effect and efficiency of the proposed method.
引用
收藏
页码:7739 / 7757
页数:19
相关论文
共 61 条
[31]   Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction [J].
Maggioni, Matteo ;
Katkovnik, Vladimir ;
Egiazarian, Karen ;
Foi, Alessandro .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) :119-133
[32]  
Miao W, 2013, MATRIX COMPLETION MO
[33]  
Parul P, 2015, INT J ENG COMPUT SCI, V15, P2314
[34]   Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising [J].
Peng, Yi ;
Meng, Deyu ;
Xu, Zongben ;
Gao, Chenqiang ;
Yang, Yi ;
Zhang, Biao .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2949-2956
[35]   Denoising and dimensionality reduction using multilinear tools for hyperspectral images [J].
Renard, Nadine ;
Bourennane, Salah ;
Blanc-Talon, Jacques .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (02) :138-142
[36]  
Sun L., 2017, 2017 IEEE VISUAL COM, P1
[37]   Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification [J].
Sun, Le ;
Ma, Chenyang ;
Chen, Yunjie ;
Zheng, Yuhui ;
Shim, Hiuk Jae ;
Wu, Zebin ;
Jeon, Byeungwoo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) :3829-3842
[38]   SOME MATHEMATICAL NOTES ON 3-MODE FACTOR ANALYSIS [J].
TUCKER, LR .
PSYCHOMETRIKA, 1966, 31 (03) :279-279
[39]  
Wald L, 2002, DATA FUSION DEFINITI
[40]   Global Convergence of ADMM in Nonconvex Nonsmooth Optimization [J].
Wang, Yu ;
Yin, Wotao ;
Zeng, Jinshan .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) :29-63