Black carbon mixing state impacts on cloud microphysical properties: Effects of aerosol plume and environmental conditions

被引:26
作者
Ching, J. [1 ]
Riemer, N. [2 ]
West, M. [3 ]
机构
[1] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA
[2] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
基金
美国国家科学基金会;
关键词
SPECTRAL DISPERSION; OPTICAL-PROPERTIES; DROPLET FORMATION; EFFECTIVE RADIUS; CLIMATE MODELS; PARAMETERIZATION; CONDENSATION; CCN; STRATOCUMULUS; PRECIPITATION;
D O I
10.1002/2016JD024851
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study, the particle-resolved aerosol model PartMC-MOSAIC (Particle Monte Carlo-Model for Simulating Aerosol Interactions and Chemistry) was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process-level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). In most of the simulations the plume and parcel effects had opposite signs, with the plume effect dominating. The response of cloud droplet number concentration to changes in BC emissions depended on the BC mixing state. When the aerosol population contained mainly aged BC, an increase in BC emission increased cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contained mainly fresh BC particles, they act as sinks for condensable gaseous species, resulting in decreasing cloud droplet number concentration as BC emissions were increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged BC mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.
引用
收藏
页码:5990 / 6013
页数:24
相关论文
共 64 条
[1]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[2]  
[Anonymous], 1998, Microphysics of clouds and precipitation
[3]   Vertical velocity statistics in continental stratocumulus as measured by a 94GHz radar [J].
Babb, DM ;
Verlinde, J .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (08) :1177-1180
[4]   Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions [J].
Bahadur, Ranjit ;
Russell, Lynn M. ;
Jacobson, Mark Z. ;
Prather, Kimberly ;
Nenes, Athanasios ;
Adams, Peter ;
Seinfeld, John H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[5]   MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models [J].
Bauer, S. E. ;
Wright, D. L. ;
Koch, D. ;
Lewis, E. R. ;
McGraw, R. ;
Chang, L. -S. ;
Schwartz, S. E. ;
Ruedy, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (20) :6003-6035
[6]  
Bewley JL, 2011, J ATMOS SCI, V68, P2921, DOI [10.1075/JAS-D-11-0153.1, 10.1175/JAS-D-11-0153.1]
[7]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[8]   The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010 [J].
Cahill, J. F. ;
Suski, K. ;
Seinfeld, J. H. ;
Zaveri, R. A. ;
Prather, K. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (22) :10989-11002
[9]   Large contribution of natural aerosols to uncertainty in indirect forcing [J].
Carslaw, K. S. ;
Lee, L. A. ;
Reddington, C. L. ;
Pringle, K. J. ;
Rap, A. ;
Forster, P. M. ;
Mann, G. W. ;
Spracklen, D. V. ;
Woodhouse, M. T. ;
Regayre, L. A. ;
Pierce, J. R. .
NATURE, 2013, 503 (7474) :67-+
[10]   New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects [J].
Chen, Jingyi ;
Liu, Yangang ;
Zhang, Minghua ;
Peng, Yiran .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (04) :1780-1787