Stable boundary element domain decomposition methods for the Helmholtz equation

被引:21
作者
Steinbach, O. [1 ]
Windisch, M. [1 ]
机构
[1] Inst Numer Math, TU Graz, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
FETI;
D O I
10.1007/s00211-010-0315-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a stable boundary element domain decomposition method to solve boundary value problems of the Helmholtz equation via a tearing and interconnecting approach. A possible non-uniqueness of the solution of local boundary value problems due to the appearance of local eigensolutions is resolved by using modified interface conditions of Robin type, which results in a Galerkin boundary element discretization which is robust for all local wave numbers. Numerical examples confirm the stability of the proposed approach.
引用
收藏
页码:171 / 195
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 2001, ACOUSTIC ELECTROMAGN
[2]   A domain decomposition method for the Helmholtz equation and related optimal control problems [J].
Benamou, JD ;
Despres, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (01) :68-82
[3]   An additive Schwarz preconditioner for the FETI method [J].
Brenner, SC .
NUMERISCHE MATHEMATIK, 2003, 94 (01) :1-31
[4]   The direct and inverse scattering problems for partially coated obstacles [J].
Cakoni, F ;
Colton, D ;
Monk, P .
INVERSE PROBLEMS, 2001, 17 (06) :1997-2015
[5]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[6]  
Farhat C, 2000, NUMER MATH, V85, P283, DOI 10.1007/s002110000147
[7]   A METHOD OF FINITE-ELEMENT TEARING AND INTERCONNECTING AND ITS PARALLEL SOLUTION ALGORITHM [J].
FARHAT, C ;
ROUX, FX .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (06) :1205-1227
[8]  
Gosselet P., 2007, COMPUT MECH ADV, V13, P515
[9]  
Hsiao GC, 2008, APPL MATH SCI, V164, P1
[10]  
Klawonn A, 2001, COMMUN PUR APPL MATH, V54, P57, DOI 10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO