Integration of Dissipative Partial Differential Equations: A Case Study

被引:42
作者
Arioli, Gianni [1 ,2 ]
koch, Hans [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Politecn Milan, MOX, I-20133 Milan, Italy
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Kuramoto-Sivashinski equation; hyperbolicity; periodic orbit; computer-assisted proof; COVERING RELATIONS; SIVASHINSKY;
D O I
10.1137/10078298X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a computer-assisted technique for constructing and analyzing orbits of dissipative evolution equations. As a case study, the methods are applied to the Kuramoto-Sivashinski equation, for which we prove the existence of a hyperbolic periodic orbit.
引用
收藏
页码:1119 / 1133
页数:15
相关论文
共 19 条
[1]  
[Anonymous], PROG THEOR PHYS
[2]   Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model [J].
Arioli, G ;
Koch, H ;
Terracini, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (01) :1-19
[3]   Symbolic dynamics for the Henon-Heiles Hamiltonian on the critical level [J].
Arioli, G ;
Zgliczynski, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (01) :173-202
[4]   Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto-Sivashinski Equation [J].
Arioli, Gianni ;
Koch, Hans .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (03) :1033-1051
[5]   Spatiotemporal chaos in terms of unstable recurrent patterns [J].
Christiansen, F ;
Cvitanovic, P ;
Putkaradze, V .
NONLINEARITY, 1997, 10 (01) :55-70
[6]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[7]  
Du Y, 2006, ORDER STRUCTURE TOPO, DOI DOI 10.1142/5999
[8]  
Dunford N., 1988, Linear operators, part 1: general theory
[9]  
*GCC, FREE SOFTW COMP AD P
[10]  
Gidea M, 2004, J DIFFER EQUATIONS, V202, P59, DOI 10.1016/j.jde.2004.03.014