Isonormal surfaces: A new tool for the multidimensional dynamical analysis of iterative methods for solving nonlinear systems

被引:5
作者
Capdevila, Raudys R. [1 ,2 ]
Cordero, Alicia [1 ]
Torregrosa, Juan R. [1 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
[2] Univ San Francisco Quito, Dept Educ Linea, Quito, Ecuador
关键词
dynamical analysis; isonormal surface; iterative method; nonlinear systems; stability; EQUATIONS; SCHEME; ORDER;
D O I
10.1002/mma.7695
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamical behavior of the rational vectorial operator associated with a multidimensional iterative method on polynomial systems gives us interesting information about the stability of the iterative scheme. The stability of fixed points, dynamic planes, bifurcation diagrams, etc. are known tools that provide us this information. In this manuscript, we introduce a new tool, which we call isonormal surface, to complement the information about the stability of the iterative method provided by the dynamical elements mentioned above. These dynamical instruments are used for analyzing the stability of a parametric family of multidimensional iterative schemes in terms of the value of the parameter. Some numerical tests confirm the obtained dynamical results.
引用
收藏
页码:3360 / 3375
页数:16
相关论文
共 26 条
[1]   ON A POWER WENO SCHEME WITH IMPROVED ACCURACY NEAR DISCONTINUITIES [J].
Amat, Sergio ;
Liandrat, Jacques ;
Ruiz, Juan ;
Trillo, Juan C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06) :A2472-A2507
[2]   Design and multidimensional extension of iterative methods for solving nonlinear problems [J].
Artidiello, S. ;
Cordero, Alicia ;
Torregrosa, Juan R. ;
Vassileva, M. P. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 :194-203
[3]   Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure [J].
Artidiello, Santiago ;
Cordero, Alicia ;
Torregrosa, Juan R. ;
Vassileva, Maria P. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :1064-1071
[4]   Solution of a system of nonlinear equations by Adomian decomposition method [J].
Babolian, E ;
Biazar, J ;
Vahidi, AR .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (03) :847-854
[5]   A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems [J].
Capdevila, Raudys R. ;
Cordero, Alicia ;
Torregrosa, Juan R. .
MATHEMATICS, 2019, 7 (12)
[6]   On the effect of the multidimensional weight functions on the stability of iterative processes [J].
Chicharro, Francisco I. ;
Cordero, Alicia ;
Garrido, Neus ;
Torregrosa, Juan R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405
[7]   On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory [J].
Chicharro, Francisco, I ;
Cordero, Alicia ;
Garrido, Neus ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS LETTERS, 2020, 104
[8]   Drawing Dynamical and Parameters Planes of Iterative Families and Methods [J].
Chicharro, Francisco I. ;
Cordero, Alicia ;
Torregrosa, Juan R. .
SCIENTIFIC WORLD JOURNAL, 2013,
[9]   Variants of Newton's Method using fifth-order quadrature formulas [J].
Cordero, A. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :686-698
[10]   Iterative Methods with Memory for Solving Systems of Nonlinear Equations Using a Second Order Approximation [J].
Cordero, Alicia ;
Maimo, Javier G. ;
Torregrosa, Juan R. ;
Vassileva, Maria P. .
MATHEMATICS, 2019, 7 (11)