Limits of iterations of complex maps and hypergeometric functions

被引:0
作者
Matsumoto, Keiji [1 ]
Oikawa, Takashi [2 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Hokkaido Kushiro Higashi High Sch, Kushiro, Hokkaido 0880618, Japan
关键词
limit of iteration; hypergeometric function; TRANSFORMATION FORMULAS; MEAN ITERATIONS; F-D; AGM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the limit of the iteration of a map z -> m(z) from a complex domain D to D. For two kinds of maps m, we show that each iteration m(n)(z) of m(z) converges for any z is an element of D as n -> infinity and that this limit is expressed by the hypergeometric function. These are analogs of the expression of the arithmetic-geometric mean by the Gauss hypergeornetric function.
引用
收藏
页码:135 / 155
页数:21
相关论文
共 10 条
[1]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[2]  
BORWEIN JM, 1998, PI AGM, V4
[3]  
Carlson B.C., 1971, MAA MONTHLY, V78, P496
[4]   Mean iterations derived from transformation formulas for the hypergeometric function [J].
Hattori, Ryohei ;
Kato, Takayuki ;
Matsumoto, Keiji .
HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (03) :563-586
[5]   THE COMMON LIMIT OF A QUADRUPLE SEQUENCE AND THE HYPERGEOMETRIC FUNCTION FD OF THREE VARIABLES [J].
Kato, Takayuki ;
Matsumoto, Keiji .
NAGOYA MATHEMATICAL JOURNAL, 2009, 195 :113-124
[6]   An extended Gauss AGM and corresponding Picard modular forms [J].
Koike, Kenji ;
Shiga, Hironori .
JOURNAL OF NUMBER THEORY, 2008, 128 (07) :2097-2126
[7]   Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean [J].
Koike, Kenji ;
Shiga, Hironori .
JOURNAL OF NUMBER THEORY, 2007, 124 (01) :123-141
[8]   A TRANSFORMATION FORMULA FOR APPELL'S HYPERGEOMETRIC FUNCTION F1 AND COMMON LIMITS OF TRIPLE SEQUENCES BY MEAN ITERATIONS [J].
Matsumoto, Keiji .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (02) :263-268
[9]   Some Transformation Formulas for Lauricella's Hypergeometric Functions FD [J].
Matsumoto, Keiji ;
Ohara, Katsuyoshi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (02) :203-212
[10]  
Vidunas R, 2009, FUNKC EKVACIOJ-SER I, V52, P139