Semiparametric model average prediction in panel dataanalysis

被引:11
作者
Huang, Tao [1 ]
Li, Jialiang [2 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[2] Natl Univ Singapore, Singapore Eye Res Inst, Duke NUS Grad Med Sch, Dept Stat & Appl Probabil, Singapore, Singapore
关键词
Model average; panel data; covariance function; semiparametric estimation; prediction error; NONCONCAVE PENALIZED LIKELIHOOD; COEFFICIENT MODELS; VARIABLE SELECTION; LONGITUDINAL DATA; REGRESSION;
D O I
10.1080/10485252.2017.1404061
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Forecasting in economic data analysis is dominated by linear prediction methods where the predicted values are calculated from a fitted linear regression model. With multiple predictor variables, multivariate nonparametric models were proposed in the literature. However, empirical studies indicate the prediction performance of multi-dimensional nonparametric models may be unsatisfactory. We propose a new semiparametric model average prediction (SMAP) approach to analyse panel data and investigate its prediction performance with numerical examples. Estimation of individual covariate effect only requires univariate smoothing and thus may be more stable than previous multivariate smoothing approaches. The estimation of optimal weight parameters incorporates the longitudinal correlation and the asymptotic properties of the estimated results are carefully studied in this paper.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 45 条
[1]   Sparse nonparametric model for regression with functional covariate [J].
Aneiros, G. ;
Vieu, P. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) :839-859
[2]  
Baltagi BH, 2001, J ECONOMETRICS, V101, P357
[3]   Model selection: An integral part of inference [J].
Buckland, ST ;
Burnham, KP ;
Augustin, NH .
BIOMETRICS, 1997, 53 (02) :603-618
[4]   On last observation carried forward and asynchronous longitudinal regression analysis [J].
Cao, Hongyuan ;
Li, Jialiang ;
Fine, Jason P. .
ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01) :1155-1180
[5]  
Chatfield Chris, 2000, Time-Series Forecasting, DOI DOI 10.1201/9781420036206
[6]   COORDINATE-INDEPENDENT SPARSE SUFFICIENT DIMENSION REDUCTION AND VARIABLE SELECTION [J].
Chen, Xin ;
Zou, Changliang ;
Cook, R. Dennis .
ANNALS OF STATISTICS, 2010, 38 (06) :3696-3723
[7]   EFFICIENT ESTIMATION IN SEMIVARYING COEFFICIENT MODELS FOR LONGITUDINAL/CLUSTERED DATA [J].
Cheng, Ming-Yen ;
Honda, Toshio ;
Li, Jialiang .
ANNALS OF STATISTICS, 2016, 44 (05) :1988-2017
[8]   NONPARAMETRIC INDEPENDENCE SCREENING AND STRUCTURE IDENTIFICATION FOR ULTRA-HIGH DIMENSIONAL LONGITUDINAL DATA [J].
Cheng, Ming-Yen ;
Honda, Toshio ;
Li, Jialiang ;
Peng, Heng .
ANNALS OF STATISTICS, 2014, 42 (05) :1819-1849
[9]   Statistical Estimation in Generalized Multiparameter Likelihood Models [J].
Cheng, Ming-Yen ;
Zhang, Wenyang ;
Chen, Lu-Hung .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1179-1191
[10]   An asymptotic theory for model selection inference in general semiparametric problems [J].
Claeskens, Gerda ;
Carroll, Raymond J. .
BIOMETRIKA, 2007, 94 (02) :249-265