On phase-space representations of quantum mechanics

被引:5
作者
Wlodarz, JJ
机构
[1] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
[2] Silesian Univ, Dept Theoret Chem, PL-40006 Katowice, Poland
关键词
D O I
10.1016/S0375-9601(01)00402-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a class of representations of quantum mechanics which uses functions defined on a parameter space to represent observable quantities. We show that infinitesimal canonical transformations could be used to introduce a phase-space-like structure consistent with the requirements of quantum mechanics. The resulting family of phase-space representations of quantum mechanics contains many well-known representations as special cases, e.g., the Weyl-Wigner-Moyal, normal and antinormal one. It is also flexible enough to represent, e.g., PT-symmetric theories, introduced recently within the context of non-Hermitian quantum mechanics. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 101
页数:5
相关论文
共 55 条
[1]   CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS .3. A GENERALIZED WICK THEOREM AND MULTITIME MAPPING [J].
AGARWAL, GS ;
WOLF, E .
PHYSICAL REVIEW D, 1970, 2 (10) :2206-&
[3]  
AGARWAL GS, 1970, PHYS REV D, V2, P2182
[4]  
AUDRETSCH J, 1997, PHYS REV A, V56, P9630
[5]   WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06) :347-391
[6]   UNITARY TRANSFORMATIONS, WEYLS ASSOCIATION AND THE ROLE OF CANONICAL-TRANSFORMATIONS [J].
BALAZS, NL ;
JENNINGS, BK .
PHYSICA A, 1983, 121 (03) :576-586
[7]  
Balescu R., 1975, Equilibrium and Nonequilibrium Statistical Mechanics
[8]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[9]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[10]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229