Towards artificial intelligence at scale in the chemical industry

被引:25
作者
Chiang, Leo H. [1 ]
Braun, Birgit [1 ]
Wang, Zhenyu [2 ]
Castillo, Ivan [2 ]
机构
[1] Dow Chem Co USA, Core R&D, Lake Jackson, TX 77566 USA
[2] Dow Chem Co USA, AI & Stat, Chemometr, Lake Jackson, TX 77566 USA
关键词
artificial intelligence; fault diagnosis; industrial applications; machine learning; optimization; PARTIAL LEAST-SQUARES; ROBUST OPTIMIZATION; SENSOR FUSION; SYSTEM; ANALYTICS; MODELS; IDENTIFICATION; ARCHITECTURE;
D O I
10.1002/aic.17644
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision-making is shown. Then state-of-the-art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI-ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.
引用
收藏
页数:20
相关论文
共 148 条
[121]   Smart process analytics for predictive modeling [J].
Sun, Weike ;
Braatz, Richard D. .
COMPUTERS & CHEMICAL ENGINEERING, 2021, 144
[122]   Process safety indicators, a review of literature [J].
Swuste, Paul ;
Theunissen, Jos ;
Schmitz, Peter ;
Reniers, Genserik ;
Blokland, Peter .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 40 :162-173
[123]   The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware [J].
Tai, Xin Yee ;
Zhang, Hao ;
Niua, Zhiqiang ;
Christiec, Steven D. R. ;
Xuan, Jin .
ENERGY AND AI, 2020, 2
[124]   Trend-Based Repair Quality Assessment for Industrial Rotating Equipment [J].
Toothman, Maxwell ;
Braun, Birgit ;
Bury, Scott J. ;
Dessauer, Michael ;
Henderson, Kaytlin ;
Wright, Ray ;
Tilbury, Dawn M. ;
Moyne, James ;
Barton, Kira .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05) :1675-1680
[125]   System architectures for Industrie 4.0 applications Derivation of a generic architecture proposal [J].
Trunzer, Emanuel ;
Cala, Ambra ;
Leitao, Paulo ;
Gepp, Michael ;
Kinghorst, Jakob ;
Lueder, Arndt ;
Schauerte, Hubertus ;
Reifferscheid, Markus ;
Vogel-Heuser, Birgit .
PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2019, 13 (3-4) :247-257
[126]  
Trunzer E, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), P1106, DOI 10.1109/ICIT.2017.7915517
[127]  
TURING A. M., 1950, MIND, VLIX, P433, DOI DOI 10.1093/MIND/LIX.236.433
[128]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[129]   The promise of artificial intelligence in chemical engineering: Is it here, finally? [J].
Venkatasubramanian, Venkat .
AICHE JOURNAL, 2019, 65 (02) :466-478
[130]   Predicting Crystallization Tendency of Polymers Using Multifidelity Information Fusion and Machine Learning [J].
Venkatram, Shruti ;
Batra, Rohit ;
Chen, Lihua ;
Kim, Chiho ;
Shelton, Madeline ;
Ramprasad, Rampi .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (28) :6046-6054