Towards artificial intelligence at scale in the chemical industry

被引:25
作者
Chiang, Leo H. [1 ]
Braun, Birgit [1 ]
Wang, Zhenyu [2 ]
Castillo, Ivan [2 ]
机构
[1] Dow Chem Co USA, Core R&D, Lake Jackson, TX 77566 USA
[2] Dow Chem Co USA, AI & Stat, Chemometr, Lake Jackson, TX 77566 USA
关键词
artificial intelligence; fault diagnosis; industrial applications; machine learning; optimization; PARTIAL LEAST-SQUARES; ROBUST OPTIMIZATION; SENSOR FUSION; SYSTEM; ANALYTICS; MODELS; IDENTIFICATION; ARCHITECTURE;
D O I
10.1002/aic.17644
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision-making is shown. Then state-of-the-art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI-ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.
引用
收藏
页数:20
相关论文
共 148 条
[101]   Wastewater quality monitoring system using sensor fusion and machine learning techniques [J].
Qin, Xusong ;
Gao, Furong ;
Chen, Guohua .
WATER RESEARCH, 2012, 46 (04) :1133-1144
[102]   Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing [J].
Raji, Inioluwa Deborah ;
Smart, Andrew ;
White, Rebecca N. ;
Mitchell, Margaret ;
Gebru, Timnit ;
Hutchinson, Ben ;
Smith-Loud, Jamila ;
Theron, Daniel ;
Barnes, Parker .
FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, 2020, :33-44
[103]   Digital Twin: Values, Challenges and Enablers From a Modeling Perspective [J].
Rasheed, Adil ;
San, Omer ;
Kvamsdal, Trond .
IEEE ACCESS, 2020, 8 :21980-22012
[104]   A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part I-Assessing Detection Strength [J].
Rato, Tiago J. ;
Rendall, Ricardo ;
Gomes, Veronique ;
Chin, Swee-Teng ;
Chiang, Leo H. ;
Saraiva, Pedro M. ;
Reis, Marco S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (18) :5342-5358
[105]   Incorporation of process-specific structure in statistical process monitoring: A review [J].
Reis, Marco S. ;
Gins, Geert ;
Rato, Tiago J. .
JOURNAL OF QUALITY TECHNOLOGY, 2019, 51 (04) :407-421
[106]   Data-driven methods for batch data analysis - A critical overview and mapping on the complexity scale [J].
Rendall, Ricardo ;
Chiang, Leo H. ;
Reis, Marco S. .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 124 :1-13
[107]   Image-based manufacturing analytics: Improving the accuracy of an industrial pellet classification system using deep neural networks [J].
Rendall, Ricardo ;
Castillo, Ivan ;
Lu, Bo ;
Colegrove, Brenda ;
Broadway, Michael ;
Chiang, Leo H. ;
Reis, Marco S. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 180 :26-35
[108]   A Unifying and Integrated Framework for Feature Oriented Analysis of Batch Processes [J].
Rendall, Ricardo ;
Lu, Bo ;
Castillo, Ivan ;
Chin, Swee-Teng ;
Chiang, Leo H. ;
Reis, Marco S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (30) :8590-8605
[109]  
Ridsdale Chantel., 2015, STRATEGIES BEST PRAC
[110]   Inverse molecular design using machine learning: Generative models for matter engineering [J].
Sanchez-Lengeling, Benjamin ;
Aspuru-Guzik, Alan .
SCIENCE, 2018, 361 (6400) :360-365