Towards artificial intelligence at scale in the chemical industry

被引:25
作者
Chiang, Leo H. [1 ]
Braun, Birgit [1 ]
Wang, Zhenyu [2 ]
Castillo, Ivan [2 ]
机构
[1] Dow Chem Co USA, Core R&D, Lake Jackson, TX 77566 USA
[2] Dow Chem Co USA, AI & Stat, Chemometr, Lake Jackson, TX 77566 USA
关键词
artificial intelligence; fault diagnosis; industrial applications; machine learning; optimization; PARTIAL LEAST-SQUARES; ROBUST OPTIMIZATION; SENSOR FUSION; SYSTEM; ANALYTICS; MODELS; IDENTIFICATION; ARCHITECTURE;
D O I
10.1002/aic.17644
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the Industry 4.0 era, the chemical industry is embracing broad adoption of artificial intelligence (AI) and machine learning (ML) methods. This article provides a holistic view of how the industry is transforming digitally towards AI at scale. First, a historical perspective on how the industry used AI to aid humans in better decision-making is shown. Then state-of-the-art AI research addressing industrial needs on reliability and safety, process optimization, supply chain, material discovery, and reaction engineering is highlighted. Finally, a vision of the plant of the future is illustrated with critical components of AI-ready culture, model life cycle management, and renewed role of humans in chemical manufacturing.
引用
收藏
页数:20
相关论文
共 148 条
[91]   Reactor modeling and recipe optimization of polyether polyol processes: Polypropylene glycol [J].
Nie, Yisu ;
Biegler, Lorenz T. ;
Villa, Carlos M. ;
Wassick, John M. .
AICHE JOURNAL, 2013, 59 (07) :2515-2529
[92]   A data-driven multistage adaptive robust optimization framework for planning and scheduling under uncertainty [J].
Ning, Chao ;
You, Fengqi .
AICHE JOURNAL, 2017, 63 (10) :4343-4369
[93]  
Olofsson S., 2018, INT C MACH LEARN, P3908
[94]   Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science [J].
Olson, Randal S. ;
Bartley, Nathan ;
Urbanowicz, Ryan J. ;
Moore, Jason H. .
GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, :485-492
[95]   A multi-fidelity information-fusion approach to machine learn and predict polymer bandgap [J].
Patra, Abhirup ;
Batra, Rohit ;
Chandrasekaran, Anand ;
Kim, Chiho ;
Tran Doan Huan ;
Ramprasad, Rampi .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
[96]   Applications of Advanced Analytics at Saudi Aramco: A Practitioners' Perspective [J].
Patwardhan, Rohit S. ;
Hamadah, Hamza A. ;
Patel, Kalpesh M. ;
Hafiz, Rayan H. ;
Al-Gwaiz, Majid M. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (26) :11338-11351
[97]   Data-Driven Strategies for Accelerated Materials Design [J].
Pollice, Robert ;
Gomes, Gabriel dos Passos ;
Aldeghi, Matteo ;
Hickman, Riley J. ;
Krenn, Mario ;
Lavigne, Cyrille ;
Lindner-D'Addario, Michael ;
Nigam, AkshatKumar ;
Ser, Cher Tian ;
Yao, Zhenpeng ;
Aspuru-Guzik, Alan .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) :849-860
[98]  
Qin J., 2010, LESSONS LEARNED 2 YE
[99]   Integration of process knowledge and statistical learning for the Dow data challenge problem [J].
Qin, S. Joe ;
Guo, Siyi ;
Li, Zheyu ;
Chiang, Leo H. ;
Castillo, Ivan ;
Braun, Birgit ;
Wang, Zhenyu .
COMPUTERS & CHEMICAL ENGINEERING, 2021, 153
[100]   Advances and opportunities in machine learning for process data analytics [J].
Qin, S. Joe ;
Chiang, Leo H. .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 126 :465-473