Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules

被引:10
作者
Gedefaw, Lealem [1 ]
Ullah, Sami [1 ]
Lee, Thomas M. H. [2 ]
Yip, Shea Ping [1 ]
Huang, Chien-Ling [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Biomed Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Future Food, Hong Kong, Peoples R China
关键词
inflammasome; RNA interference; COVID-19; non-coding RNAs; molecular targets; INNATE IMMUNE-RESPONSE; LONG NONCODING RNAS; NLRP3; INFLAMMASOME; LIPID NANOPARTICLES; ADENOASSOCIATED VIRUS; SIRNA; MICRORNAS; PYROPTOSIS; MIRNA; STRATEGIES;
D O I
10.3390/biomedicines9121823
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
引用
收藏
页数:28
相关论文
共 210 条
[1]   Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza [J].
Abbott, Timothy R. ;
Dhamdhere, Girija ;
Liu, Yanxia ;
Lin, Xueqiu ;
Goudy, Laine ;
Zeng, Leiping ;
Chemparathy, Augustine ;
Chmura, Stephen ;
Heaton, Nicholas S. ;
Debs, Robert ;
Pande, Tara ;
Endy, Drew ;
La Russa, Marie F. ;
Lewis, David B. ;
Qi, Lei S. .
CELL, 2020, 181 (04) :865-+
[2]   Asthma and COVID-19 [J].
Abrams, Elissa M. ;
't Jong, Geert W. ;
Yang, Connie L. .
CANADIAN MEDICAL ASSOCIATION JOURNAL, 2020, 192 (20) :E551-E551
[3]   Gene therapy avenues and COVID-19 vaccines [J].
Abu Abed, Omar S. .
GENES AND IMMUNITY, 2021, 22 (02) :120-124
[4]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[5]   Neurological Manifestations of COVID-19 (SARS-CoV-2): A Review [J].
Ahmed, Muhammad Umer ;
Hanif, Muhammad ;
Ali, Mukarram Jamat ;
Haider, Muhammad Adnan ;
Kherani, Danish ;
Memon, Gul Muhammad ;
Karim, Amin H. ;
Satter, Abdul .
FRONTIERS IN NEUROLOGY, 2020, 11
[6]   Optimized production and concentration of lentiviral vectors containing large inserts [J].
Al Yacoub, Nadya ;
Romanowska, Malgorzata ;
Haritonova, Natalie ;
Foerster, John .
JOURNAL OF GENE MEDICINE, 2007, 9 (07) :579-584
[7]   Attacking the genome: emerging siRNA nanocarriers from concept to clinic [J].
Alabi, Christopher ;
Vegas, Arturo ;
Anderson, Daniel .
CURRENT OPINION IN PHARMACOLOGY, 2012, 12 (04) :427-433
[8]   Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults [J].
Anderson, E. J. ;
Rouphael, N. G. ;
Widge, A. T. ;
Jackson, L. A. ;
Roberts, P. C. ;
Makhene, M. ;
Chappell, J. D. ;
Denison, M. R. ;
Stevens, L. J. ;
Pruijssers, A. J. ;
McDermott, A. B. ;
Flach, B. ;
Lin, B. C. ;
Doria-Rose, N. A. ;
O'Dell, S. ;
Schmidt, S. D. ;
Corbett, K. S. ;
Swanson, P. A., II ;
Padilla, M. ;
Neuzil, K. M. ;
Bennett, H. ;
Leav, B. ;
Makowski, M. ;
Albert, J. ;
Cross, K. ;
Edara, V. V. ;
Floyd, K. ;
Suthar, M. S. ;
Martinez, D. R. ;
Baric, R. ;
Buchanan, W. ;
Luke, C. J. ;
Phadke, V. K. ;
Rostad, C. A. ;
Ledgerwood, J. E. ;
Graham, B. S. ;
Beigel, J. H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (25) :2427-2438
[9]   Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? [J].
Andersson, Ulf ;
Ottestad, William ;
Tracey, Kevin J. .
MOLECULAR MEDICINE, 2020, 26 (01)
[10]  
[Anonymous], WHO Therapeutics and COVID-19: Living guideline