Lp-regularity of the Bergman projection on quotient domains

被引:18
作者
Bender, Chase [1 ]
Chakrabarti, Debraj [1 ]
Edholm, Luke [2 ]
Mainkar, Meera [1 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2022年 / 74卷 / 03期
基金
美国国家科学基金会;
关键词
Bergman spaces; Bergman projection; Reinhardt domains; Generalized Hartogs triangle; HOLOMORPHIC-FUNCTIONS; BOUNDARY-REGULARITY; IRREGULARITY; KERNEL; SPACES;
D O I
10.4153/S0008414X21000079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sharp ranges of L-p-boundedness for domains in a wide class of Reinhardt domains representable as sublevel sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating L-p-boundedness on a domain and its quotient by a finite group. The range of p for which the Bergman projection is L-p-bounded on our class of Reinhardt domains is found to shrink as the complexity of the domain increases.
引用
收藏
页码:732 / 772
页数:41
相关论文
共 51 条
[1]  
Axler S., 1988, Surveys of Some Recent Results in Operator Theory, VI, P1
[2]   Irregularity of the Bergman Projection on Worm Domains in Cn [J].
Barrett, David ;
Sahutoglu, Soenmez .
MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) :187-198
[3]   IRREGULARITY OF THE BERGMAN PROJECTION ON A SMOOTH BOUNDED DOMAIN IN C2 [J].
BARRETT, DE .
ANNALS OF MATHEMATICS, 1984, 119 (02) :431-436
[4]   On the theory of singularity of the functions of several complex variables. The convergence problem of the regularity covers. [J].
Behnke, H ;
Thullen, P .
MATHEMATISCHE ANNALEN, 1933, 108 :91-104
[5]   BOUNDARY-REGULARITY OF PROPER HOLOMORPHIC MAPPINGS [J].
BELL, S ;
CATLIN, D .
DUKE MATHEMATICAL JOURNAL, 1982, 49 (02) :385-396
[7]   PROPER HOLOMORPHIC MAPPINGS AND THE BERGMAN PROJECTION [J].
BELL, SR .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) :167-175
[8]  
CATLIN D, 1980, J DIFFER GEOM, V15, P605
[9]   Duality and approximation of Bergman spaces [J].
Chakrabarti, D. ;
Edholm, L. D. ;
McNeal, J. D. .
ADVANCES IN MATHEMATICS, 2019, 341 :616-656
[10]   BERGMAN KERNELS OF ELEMENTARY REINHARDT DOMAINS [J].
Chakrabarti, Debraj ;
Konkel, Austin ;
Mainkar, Meera ;
Miller, Evan .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (01) :67-93