Saturation mechanism of the fluctuation dynamo at PrM ≥ 1

被引:46
作者
Seta, Amit [1 ,2 ]
Bushby, Paul J. [2 ]
Shukurov, Anvar [2 ]
Wood, Toby S. [2 ]
机构
[1] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
MAGNETIC-FIELDS; NONLINEAR DYNAMO; TURBULENT DYNAMO; COSMIC-RAYS; SCALE; ROTATION; ORIGIN; SHAPEFINDERS; MORPHOLOGY;
D O I
10.1103/PhysRevFluids.5.043702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The presence of magnetic fields in many astrophysical objects is due to dynamo action, whereby a part of the kinetic energy is converted into magnetic energy. A turbulent dynamo that produces magnetic field structures on the same scale as the turbulent flow is known as the fluctuation dynamo. We use numerical simulations to explore the nonlinear, statistically steady state of the fluctuation dynamo in driven turbulence. We demonstrate that as the magnetic field growth saturates, its amplification and diffusion are both affected by the back-reaction of the Lorentz force upon the flow. The amplification of the magnetic field is reduced due to stronger alignment between the velocity field, magnetic field, and electric current density. Furthermore, we confirm that the amplification decreases due to a weaker stretching of the magnetic field lines. The enhancement in diffusion relative to the field line stretching is quantified by a decrease in the computed local value of the magnetic Reynolds number. Using the Minkowski functionals, we quantify the shape of the magnetic structures produced by the dynamo as magnetic filaments and ribbons in both kinematic and saturated dynamos and derive the scalings of the typical length, width, and thickness of the magnetic structures with the magnetic Reynolds number. We show that all three of these magnetic length scales increase as the dynamo saturates. The magnetic intermittency, strong in the kinematic dynamo (where the magnetic field strength grows exponentially), persists in the statistically steady state, but intense magnetic filaments and ribbons are more volume-filling.
引用
收藏
页数:23
相关论文
共 94 条
  • [1] Studying the morphology of HI isodensity surfaces during reionization using Shapefinders and percolation analysis
    Bag, Satadru
    Mondal, Rajesh
    Sarkar, Prakash
    Bharadwaj, Somnath
    Choudhury, Tirthankar Roy
    Sahni, Varun
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (02) : 2235 - 2251
  • [2] The shape and size distribution of HII regions near the percolation transition
    Bag, Satadru
    Mondal, Rajesh
    Sarkar, Prakash
    Bharadwaj, Somnath
    Sahni, Varun
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (02) : 1971 - 1979
  • [3] Galactic magnetism: Recent developments and perspectives
    Beck, R
    Brandenburg, A
    Moss, D
    Shukurov, A
    Sokoloff, D
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1996, 34 : 155 - 206
  • [4] Universal Nonlinear Small-Scale Dynamo
    Beresnyak, A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (03)
  • [5] Evidence for filamentarity in the Las Campanas Redshift Survey
    Bharadwaj, S
    Sahni, V
    Sathyaprakash, BS
    Shandarin, SF
    Yess, C
    [J]. ASTROPHYSICAL JOURNAL, 2000, 528 (01) : 21 - 29
  • [6] Fluctuation dynamos at finite correlation times using renewing flows
    Bhat, Pallavi
    Subramanian, Kandaswamy
    [J]. JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [7] FLUCTUATION DYNAMO AT FINITE CORRELATION TIMES AND THE KAZANTSEV SPECTRUM
    Bhat, Pallavi
    Subramanian, Kandaswamy
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2014, 791 (02)
  • [8] Fluctuation dynamos and their Faraday rotation signatures
    Bhat, Pallavi
    Subramanian, Kandaswamy
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (03) : 2469 - 2481
  • [9] Magnetic-field generation in Kolmogorov turbulence
    Boldyrev, S
    Cattaneo, F
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (14) : 144501 - 1
  • [10] Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205