Splitting subspaces of linear operators over finite fields

被引:4
作者
Aggarwal, Divya [1 ]
Ram, Samrith [1 ]
机构
[1] Indraprastha Inst Informat Technol Delhi IIIT Del, New Delhi 110020, India
关键词
Splitting subspace; Krylov space; Anti-invariant subspace; Invariant subspace lattice; q-Vandermonde identity; Finite field; INVARIANT SUBSPACES;
D O I
10.1016/j.ffa.2021.101982
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a vector space of dimension N over the finite field F-q and T be a linear operator on V. Given an integer m that divides N, an m-dimensional subspace W of V is T -splitting if V = W (R) TW (R) middot middot middot (R) Td-1W where d = N/m. Let sigma(m, d; T) denote the number of m-dimensional T-splitting subspaces. Determining sigma(m, d;T) for an arbitrary operator T is an open problem. We prove that sigma(m, d; T) depends only on the similarity class type of T and give an explicit formula in the special case where T is cyclic and nilpotent. Denote by sigma(q)(m, d; Tau) the number of m-dimensional splitting subspaces for a linear operator of similarity class type Tau over an F-q-vector space of dimension md. For fixed values of m, d and Tau, we show that sigma(q)(m, d; Tau) is a polynomial in q. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 19 条
[1]  
Aigner M., 2007, Graduate Texts in Mathematics, V238
[2]  
Andrews GE., 1998, The Theory of Partitions, Encyclopedia of Mathematics and its Applications
[3]  
[Anonymous], 1993, London Mathematical Society Monographs. New Series
[4]  
[Anonymous], 1955, Trans. Amer. Math. Soc.
[5]   Unimodular polynomial matrices over finite fields [J].
Arora, Akansha ;
Ram, Samrith ;
Venkateswarlu, Ayineedi .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) :1299-1312
[6]   WEAKLY TRANSITIVE MATRICES [J].
BARRIA, J ;
HALMOS, PR .
ILLINOIS JOURNAL OF MATHEMATICS, 1984, 28 (03) :370-378
[7]   Random Krylov spaces over finite fields [J].
Brent, RP ;
Gao, SH ;
Lauder, AGB .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (02) :276-287
[8]   INVARIANT SUBSPACE LATTICE OF A LINEAR TRANSFORMATION [J].
BRICKMAN, L ;
FILLMORE, PA .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :810-&
[9]  
BUTLER LM, 1994, MEM AM MATH SOC, V112, P1
[10]  
Cahen P.-J., 1997, Math. Surveys Monogr., V48