Engineering Particle Size for Multivalent Ion Intercalation: Implications for Ion Battery Systems

被引:1
作者
Chen, Wenxiang [1 ,2 ]
Tang, Zhichu [1 ]
Chen, Qian [1 ,3 ,4 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Mat Res Lab, Dept Chem, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
multivalent ion batteries; particle size effect; solid-solution phase transition; spinel cathodes; reaction mechanism; scanning transmission electron microscopy; CATHODE MATERIALS; SOLID-SOLUTION; LITHIUM; LIMN2O4; OXIDE; MECHANISMS; TRANSITION; LIXFEPO4; NANORODS; ZN2+;
D O I
10.1021/acsanm.1c04360
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we present our recent understandings and engineering opportunities on the two-faceted nature of the size effect of cathode particles on electrochemically driven phase transformation pathways and reaction mechanisms. We have been using spinel lambda-MnO2 particles as a model cathode material and Mgand Zn-ion insertion as our focus of multivalent ion battery systems. We find that small, nanoscale cathode particles consistently favor a solid-solution- type phase transition and uniform ion distribution upon discharge. This phase transformation pathway facilitates fast charge insertion kinetics and mechanical stability compared to the multiphase transition pathway in large, micron-sized particles. Meanwhile, when it comes to the electrochemical reaction mechanism, the cathode particle size effect diverges for different systems. Whereas nanoscale cathode particles exhibit superior discharge capacity and cycling performance for Mg-ion-insertion systems, they suffer from a severe side reaction of Mn dissolution in aqueous Zn-ion batteries. Micron-sized lambda-MnO2 particles instead show enhanced cycling performance for Zn-ion insertion because of decreased side reaction sites per mass and accommodation of an interpenetrating network of amorphous MnOx nanosheets. Regarding the mechanistic understanding of the size effect, we discuss insights provided by high-resolution imaging methods such as scanning transmission electron microscopy and scanning electron diffraction, which are capable of monitoring structural changes in cathode particles upon multivalent ion insertion. Together we highlight the opportunities in both fundamentally understanding the electrochemically driven phase transformation in insertion materials and engineering high-performance electrode materials, not by composition variation but by tailoring of the "size".and potentially the shape, exposed facets, surface chemistry, and mesoscale assemblies.of the cathode particles. The particle size effects are transferrable and have potential applications in both multivalent and monovalent ion batteries.
引用
收藏
页码:5983 / 5992
页数:10
相关论文
共 58 条
  • [31] Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode
    Okubo, Masashi
    Hosono, Eiji
    Kim, Jedeok
    Enomoto, Masaya
    Kojima, Norimichi
    Kudo, Tetsuichi
    Zhou, Haoshen
    Honma, Itaru
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) : 7444 - 7452
  • [32] Fast Li-Ion Insertion into Nanosized LiMn2O4 without Domain Boundaries
    Okubo, Masashi
    Mizuno, Yoshifumi
    Yamada, Hirotoshi
    Kim, Jedeok
    Hosono, Eiji
    Zhou, Haoshen
    Kudo, Tetsuichi
    Honma, Itaru
    [J]. ACS NANO, 2010, 4 (02) : 741 - 752
  • [33] Lithium/vacancy ordering in the monoclinic LixNiO2 (0.50≤x≤0.75) solid solution
    Peres, JP
    Weill, F
    Delmas, C
    [J]. SOLID STATE IONICS, 1999, 116 (1-2) : 19 - 27
  • [34] Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries
    Poizot, P
    Laruelle, S
    Grugeon, S
    Dupont, L
    Tarascon, JM
    [J]. NATURE, 2000, 407 (6803) : 496 - 499
  • [35] Electronic Spin Transition in Nanosize Stoichiometric Lithium Cobalt Oxide
    Qian, Danna
    Hinuma, Yoyo
    Chen, Hailong
    Du, Lin-Shu
    Carroll, Kyler J.
    Ceder, Gerbrand
    Grey, Clare P.
    Meng, Ying S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) : 6096 - 6099
  • [36] Unveiling the role of Mn-interstitial defect and particle size on the Jahn-Teller distortion of the LiMn 2 O 4 cathode material
    Rodriguez, Renier Arabolla
    Mohallem, Nelcy Della Santina
    Santos, Manuel Avila
    Costa, Demetrio A. Sena
    Montoro, Luciano Andrey
    Laffita, Yodalgis Mosqueda
    Carrasco, Luis A. Tavera
    Perez-Cappe, Eduardo L.
    [J]. JOURNAL OF POWER SOURCES, 2021, 490
  • [37] Probing lithium and vacancy ordering in O3 layered LixCoO2 (x≈0.5) -: An electron diffraction study
    Shao-Horn, Y
    Levasseur, S
    Weill, F
    Delmas, C
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) : A366 - A373
  • [38] Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode
    Sun, Chunwen
    Rajasekhara, Shreyas
    Goodenough, John B.
    Zhou, Feng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (07) : 2132 - 2135
  • [39] Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion
    Sun, Wei
    Wang, Fei
    Hou, Singyuk
    Yang, Chongyin
    Fan, Xiulin
    Ma, Zhaohui
    Gao, Tao
    Han, Fudong
    Hu, Renzong
    Zhu, Min
    Wang, Chunsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (29) : 9775 - 9778
  • [40] Surface Structure Evolution of LiMn2O4 Cathode Material upon Charge/Discharge
    Tang, Daichun
    Sun, Yang
    Yang, Zhenzhong
    Ben, Liubin
    Gu, Lin
    Huang, Xuejie
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (11) : 3535 - 3543