Engineering Particle Size for Multivalent Ion Intercalation: Implications for Ion Battery Systems

被引:1
作者
Chen, Wenxiang [1 ,2 ]
Tang, Zhichu [1 ]
Chen, Qian [1 ,3 ,4 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Mat Res Lab, Dept Chem, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
multivalent ion batteries; particle size effect; solid-solution phase transition; spinel cathodes; reaction mechanism; scanning transmission electron microscopy; CATHODE MATERIALS; SOLID-SOLUTION; LITHIUM; LIMN2O4; OXIDE; MECHANISMS; TRANSITION; LIXFEPO4; NANORODS; ZN2+;
D O I
10.1021/acsanm.1c04360
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here we present our recent understandings and engineering opportunities on the two-faceted nature of the size effect of cathode particles on electrochemically driven phase transformation pathways and reaction mechanisms. We have been using spinel lambda-MnO2 particles as a model cathode material and Mgand Zn-ion insertion as our focus of multivalent ion battery systems. We find that small, nanoscale cathode particles consistently favor a solid-solution- type phase transition and uniform ion distribution upon discharge. This phase transformation pathway facilitates fast charge insertion kinetics and mechanical stability compared to the multiphase transition pathway in large, micron-sized particles. Meanwhile, when it comes to the electrochemical reaction mechanism, the cathode particle size effect diverges for different systems. Whereas nanoscale cathode particles exhibit superior discharge capacity and cycling performance for Mg-ion-insertion systems, they suffer from a severe side reaction of Mn dissolution in aqueous Zn-ion batteries. Micron-sized lambda-MnO2 particles instead show enhanced cycling performance for Zn-ion insertion because of decreased side reaction sites per mass and accommodation of an interpenetrating network of amorphous MnOx nanosheets. Regarding the mechanistic understanding of the size effect, we discuss insights provided by high-resolution imaging methods such as scanning transmission electron microscopy and scanning electron diffraction, which are capable of monitoring structural changes in cathode particles upon multivalent ion insertion. Together we highlight the opportunities in both fundamentally understanding the electrochemically driven phase transformation in insertion materials and engineering high-performance electrode materials, not by composition variation but by tailoring of the "size".and potentially the shape, exposed facets, surface chemistry, and mesoscale assemblies.of the cathode particles. The particle size effects are transferrable and have potential applications in both multivalent and monovalent ion batteries.
引用
收藏
页码:5983 / 5992
页数:10
相关论文
共 58 条
  • [1] Confirmation of the Domino-Cascade Model by LiFePO4/FePO4 Precession Electron Diffraction
    Brunetti, G.
    Robert, D.
    Bayle-Guillemaud, P.
    Rouviere, J. L.
    Rauch, E. F.
    Martin, J. F.
    Colin, J. F.
    Bertin, F.
    Cayron, C.
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (20) : 4515 - 4524
  • [2] Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
    Canepa, Pieremanuele
    Gautam, Gopalakrishnan Sai
    Hannah, Daniel C.
    Malik, Rahul
    Liu, Miao
    Gallagher, Kevin G.
    Persson, Kristin A.
    Ceder, Gerbrand
    [J]. CHEMICAL REVIEWS, 2017, 117 (05) : 4287 - 4341
  • [3] High capacity Li ion battery anodes using Ge nanowires
    Chan, Candace K.
    Zhang, Xiao Feng
    Cui, Yi
    [J]. NANO LETTERS, 2008, 8 (01) : 307 - 309
  • [4] Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials
    Chen, Wenxiang
    Zhan, Xun
    Luo, Binbin
    Ou, Zihao
    Shih, Pei-Chieh
    Yao, Lehan
    Pidaparthy, Saran
    Patra, Arghya
    An, Hyosung
    Braun, Paul V.
    Stephens, Ryan M.
    Yang, Hong
    Zuo, Jian-Min
    Chen, Qian
    [J]. NANO LETTERS, 2019, 19 (07) : 4712 - 4720
  • [5] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260
  • [6] VEGARD LAW
    DENTON, AR
    ASHCROFT, NW
    [J]. PHYSICAL REVIEW A, 1991, 43 (06): : 3161 - 3164
  • [7] Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries
    Ding, Yuan-Li
    Xie, Jian
    Cao, Gao-Shao
    Zhu, Tie-Jun
    Yu, Hong-Ming
    Zhao, Xin-Bing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) : 348 - 355
  • [8] Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
    Gibot, Pierre
    Casas-Cabanas, Montse
    Laffont, Lydia
    Levasseur, Stephane
    Carlach, Philippe
    Hamelet, Stephane
    Tarascon, Jean-Marie
    Masquelier, Christian
    [J]. NATURE MATERIALS, 2008, 7 (09) : 741 - 747
  • [9] Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method
    Hwang, BJ
    Santhanam, R
    Liu, DG
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 443 - 446
  • [10] Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries
    Islam, Saiful
    Alfaruqi, Muhammad Hilmy
    Mathew, Vinod
    Song, Jinju
    Kim, Sungjin
    Kim, Seokhun
    Jo, Jeonggeun
    Baboo, Joseph Paul
    Pham, Duong Tung
    Putro, Dimas Yunianto
    Sun, Yang-Kook
    Kim, Jaekook
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (44) : 23299 - 23309