GENERAL FRACTIONAL CALCULUS IN NON-SINGULAR POWER-LAW KERNEL APPLIED TO MODEL ANOMALOUS DIFFUSION PHENOMENA IN HEAT TRANSFER PROBLEMS

被引:30
作者
Gao, Feng [1 ,2 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
heat transfer; anomalous diffusion; general fractional calculus; Fourier transforms;
D O I
10.2298/TSCI170310194G
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to describe complex phenomena of the heat transfer problems.
引用
收藏
页码:S11 / S18
页数:8
相关论文
共 21 条
[1]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[2]  
Baleanu D, 2012, Fractional Calculus: Models and Numerical Methods
[3]  
Debnath L., 2015, Integral transforms and their applications, Vthird
[4]   Mittag-Leffler Functions and Their Applications [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[5]  
Kilbas A A., 2006, North-Holland Mathematical Studies, Vvol 204
[6]  
Kiryakova V., 1993, Generalized Fractional Calculus and Applications, VVolume 301
[7]   General Fractional Calculus, Evolution Equations, and Renewal Processes [J].
Kochubei, Anatoly N. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (04) :583-600
[8]   GENERAL TIME-FRACTIONAL DIFFUSION EQUATION: SOME UNIQUENESS AND EXISTENCE RESULTS FOR THE INITIAL-BOUNDARY-VALUE PROBLEMS [J].
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) :676-695
[9]   Recent history of fractional calculus [J].
Machado, J. Tenreiro ;
Kiryakova, Virginia ;
Mainardi, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1140-1153
[10]  
Parihar H. S., 2017, J MATH, V33, P189