Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides

被引:96
作者
Alghunaimi, Fahd [1 ]
Ghanem, Bader [1 ]
Alaslai, Nasser [1 ]
Swaidan, Raja [1 ]
Litwiller, Eric [1 ]
Pinnau, Ingo [1 ]
机构
[1] King AbdullahUniv Sci & Technol, Adv Membranes & Porus Mat Ctr, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
关键词
Polyimides of intrinsic microporosity; Ttiptycene; Gas separation; Natural gas; Physical aging; HIGH-PERFORMANCE; TROGERS BASE; INTRINSIC MICROPOROSITY; TRANSPORT PROPERTIES; CARBON-DIOXIDE; NATURAL-GAS; FREE-VOLUME; SEPARATION; MEMBRANES; TRIPTYCENE;
D O I
10.1016/j.memsci.2015.05.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA-DAT1) and its extended iptycene analog (6FDA-DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA-DAT2 increases the free volume over 6FDA-DAT1 and reduces the chain packing efficiency. The BET surface area based on nitrogen adsorption in 6FDA-DAT2 (450 m(2) g(-1)) is similar to 40% greater than that of 6FDA-DAT1 (320 m(2) g(-1)). 6FDA-DAT1 shows a CO2 permeability of 120 Barer and CO2/CH4 selectivity of 38, whereas 6FDA-DAT2 exhibits a 75% increase in CO2 permeability to 210 Barrer coupled with a moderate decrease in selectivity (CO2/CH4=30). Interestingly, minimal physical aging was observed over 150 days for both polymers and attributed to the high internal free volume of the shape-persistent iptycene geometries. The aged polyimides maintained CO2/CH4 selectivities of 25-35 along with high CO2 permeabilities of 90-120 Barrer up to CO2 partial pressures of 10 bar in an aggressive 50:50 CO2:CH4 mixed-gas feed, suggesting potential application in membranes for natural gas sweetening. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 327
页数:7
相关论文
共 36 条
[1]   Natural gas processing with membranes: An overview [J].
Baker, Richard W. ;
Lokhandwala, Kaaeid .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) :2109-2121
[2]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[3]   Membrane gas separation progresses for process intensification strategy in the petrochemical industry [J].
Bernardo, P. ;
Drioli, E. .
PETROLEUM CHEMISTRY, 2010, 50 (04) :271-282
[4]   MEMBRANE PROCESSES FOR THE REMOVAL OF ACID GASES FROM NATURAL-GAS .2. EFFECTS OF OPERATING-CONDITIONS, ECONOMIC-PARAMETERS, AND MEMBRANE-PROPERTIES [J].
BHIDE, BD ;
STERN, SA .
JOURNAL OF MEMBRANE SCIENCE, 1993, 81 (03) :239-252
[5]   Highly permeable polymers for gas separation membranes [J].
Budd, Peter M. ;
McKeown, Neil B. .
POLYMER CHEMISTRY, 2010, 1 (01) :63-68
[6]   Gas separation membranes from polymers of intrinsic microporosity [J].
Budd, PM ;
Msayib, KJ ;
Tattershall, CE ;
Ghanem, BS ;
Reynolds, KJ ;
McKeown, NB ;
Fritsch, D .
JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) :263-269
[7]   Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troger's Base Polymers [J].
Carta, Mariolino ;
Croad, Matthew ;
Malpass-Evans, Richard ;
Jansen, Johannes C. ;
Bernardo, Paola ;
Clarizia, Gabriele ;
Friess, Karel ;
Lanc, Marek ;
McKeown, Neil B. .
ADVANCED MATERIALS, 2014, 26 (21) :3526-3531
[8]   An Efficient Polymer Molecular Sieve for Membrane Gas Separations [J].
Carta, Mariolino ;
Malpass-Evans, Richard ;
Croad, Matthew ;
Rogan, Yulia ;
Jansen, Johannes C. ;
Bernardo, Paola ;
Bazzarelli, Fabio ;
McKeown, Neil B. .
SCIENCE, 2013, 339 (6117) :303-307
[9]   High Performance Polyimide with High Internal Free Volume Elements [J].
Cho, Yoon Jin ;
Park, Ho Bum .
MACROMOLECULAR RAPID COMMUNICATIONS, 2011, 32 (07) :579-586
[10]   Accelerated physical aging of thin poly[1-(trimethylsilyl)-1-propyne] films [J].
Dorkenoo, KD ;
Pfromm, PH .
MACROMOLECULES, 2000, 33 (10) :3747-3751