Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations

被引:6
|
作者
Dai, Ping-Fei [1 ]
Wu, Qing-Biao [1 ]
Zhu, Sheng-Feng [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Dept Data Math, Shanghai, Peoples R China
[3] East China Normal Univ, Sch Math Sci, Shanghai Key Lab Pure Math & Math Practice, Shanghai, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
fractional diffusion; Krylov subspace; linear systems; preconditioner; quasi-Toeplitz splitting; FINITE-DIFFERENCE APPROXIMATIONS; ANOMALOUS DIFFUSION; SPECTRAL METHOD; CONVERGENCE;
D O I
10.1002/num.22320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a class of quasi-Toeplitz splitting iteration methods to solve the two-sided unsteady space-fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(nlogn) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi-circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods.
引用
收藏
页码:699 / 715
页数:17
相关论文
共 50 条
  • [1] Quasi-Toeplitz Trigonometric Transform Splitting Methods for Spatial Fractional Diffusion Equations
    Xin-Hui Shao
    Yu-Han Li
    Hai-Long Shen
    Journal of Scientific Computing, 2021, 89
  • [2] Quasi-Toeplitz Trigonometric Transform Splitting Methods for Spatial Fractional Diffusion Equations
    Shao, Xin-Hui
    Li, Yu-Han
    Shen, Hai-Long
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (01)
  • [3] Dominant Hermitian splitting iteration method for discrete space-fractional diffusion equations
    Lu, Kang-Ya
    Xie, Dong-Xiu
    Chen, Fang
    Muratova, Galina, V
    APPLIED NUMERICAL MATHEMATICS, 2021, 164 : 15 - 28
  • [4] Fast solution methods for space-fractional diffusion equations
    Wang, Hong
    Du, Ning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 376 - 383
  • [5] An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations
    Dai, Pingfei
    Wu, Qingbiao
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [6] Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations
    Zhou, Yongtao
    Zhang, Chengjian
    Brugnano, Luigi
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 633 - 649
  • [7] Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations
    Yongtao Zhou
    Chengjian Zhang
    Luigi Brugnano
    Numerical Algorithms, 2020, 84 : 633 - 649
  • [8] A Class of Preconditioners Based on Positive-Definite Operator Splitting Iteration Methods for Variable-Coefficient Space-Fractional Diffusion Equations
    Jun-Feng Yin
    Yi-Shu Du
    Communications on Applied Mathematics and Computation, 2021, 3 : 157 - 176
  • [9] A Class of Preconditioners Based on Positive-Definite Operator Splitting Iteration Methods for Variable-Coefficient Space-Fractional Diffusion Equations
    Yin, Jun-Feng
    Du, Yi-Shu
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 157 - 176
  • [10] Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations
    Bai, Zhong-Zhi
    Lu, Kang-Ya
    Pan, Jian-Yu
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (04)