Erdos-Ginzburg-Ziv theorem and Noether number for Cm ∝φ Cmn

被引:23
作者
Han, Dongchun [1 ]
Zhang, Hanbin [2 ]
机构
[1] Southwest Jiaotong Univ, Dept Math, Chengdu 610000, Sichuan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Zero-sum theory; Davenport constant; Erdos-Ginzburg-Ziv theorem; Noether number; DAVENPORT CONSTANT; COMBINATORIAL PROBLEM; FINITE;
D O I
10.1016/j.jnt.2018.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a multiplicative finite group and S = a(1) ..... a(k) a sequence over G. We call S a product-one sequence if 1 = Pi(k)(i=1) a(tau(i)) holds for some permutation tau of {1, ..., k}. The small Davenport constant d(G) is the maximal length of a product-one free sequence over G. For a subset L subset of N, let s(L)(G) denote the smallest l is an element of N-0 U {infinity} such that every sequence S over G of length vertical bar S vertical bar >= l has a product-one subsequence T of length vertical bar T vertical bar is an element of L. Denote e(G) = max{ord(g) : g is an element of G}. Some classical product-one (zero-sum) invariants including D(G) := s(N)(G) (when G is abelian), E(G) := s({vertical bar G vertical bar})(G), s(G) := S ({e(G)})(G), eta(G) := s([1,e(G)]) (G) and s(dN)(G) (d is an element of N) have received a lot of studies. The Noether number beta(G) which is closely related to zero-sum theory is defined to be the maximal degree bound for the generators of the algebra of polynomial invariants. Let G congruent to C-m proportional to(phi) C-mn, in this paper, we prove that E(G) = d(G) + vertical bar G vertical bar = m(2)n + m + mn - 2 and beta(G) = d(G) + 1 = m + mn - 1. We also prove that s(mnN)(G) = m + 2mn - 2 and provide the upper bounds of eta(G), s(G). Moreover, if G is a non-cyclic nilpotent group and p is the smallest prime divisor of vertical bar G vertical bar, we prove that beta(G) <= vertical bar G vertical bar/p + p - 1 except if p = 2 and G is a dicyclic group, in which case beta(G) = 1/2 vertical bar G vertical bar + 2. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 37 条
  • [11] On the generalized Davenport constant and the Noether number
    Cziszter, Kalman
    Domokos, Matyas
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (09): : 1605 - 1615
  • [12] Noether's bound for polynomial invariants of finite groups
    Domokos, M
    Hegedüs, P
    [J]. ARCHIV DER MATHEMATIK, 2000, 74 (03) : 161 - 167
  • [13] ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
  • [14] Gao W. D., 1996, Acta Math. Sinica (Chinese Ser.), V39, P514
  • [15] A combinatorial problem on finite Abelian groups
    Gao, WD
    [J]. JOURNAL OF NUMBER THEORY, 1996, 58 (01) : 100 - 103
  • [16] On zero-sum subsequences of restricted size II
    Gao, WD
    [J]. DISCRETE MATHEMATICS, 2003, 271 (1-3) : 51 - 59
  • [17] The Erdos-Ginzburg-Ziv theorem for dihedral groups
    Gao, Weidong
    Lu, Zaiping
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (02) : 311 - 319
  • [18] Zero-sum problems in finite abelian groups: A survey
    Gao, Weidong
    Geroldinger, Alfred
    [J]. EXPOSITIONES MATHEMATICAE, 2006, 24 (04) : 337 - 369
  • [19] The EGZ-constant and short zero -sum sequences over finite abelian groups
    Gao, Weidong
    Han, Dongchun
    Zhang, Hanbin
    [J]. JOURNAL OF NUMBER THEORY, 2016, 162 : 601 - 613
  • [20] The Erdos-Ginzburg-Ziv theorem for finite solvable groups
    Gao, Weidong
    Li, Yuanlin
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (06) : 898 - 909