Joint Online Parameter Estimation and Optimal Sensor Placement for the Partially Observed Stochastic Advection-Diffusion Equation

被引:8
作者
Sharrock, Louis [1 ]
Kantas, Nikolas [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
stochastic advection-diffusion equation;   stochastic filtering; online parameter estimation; optimal sensor placement; two-timescale stochastic gradient descent; PARTIAL-DIFFERENTIAL-EQUATIONS; INFINITE-DIMENSIONAL PARAMETER; MAXIMUM-LIKELIHOOD-ESTIMATION; STATISTICAL-INFERENCE; GROUNDWATER HYDROLOGY; GRADIENT DESCENT; OPTIMAL LOCATION; SPACE; APPROXIMATION; IDENTIFICATION;
D O I
10.1137/20M1375073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the problem of jointly performing online parameter estimation and optimal sensor placement for a partially observed infinite-dimensional linear diffusion process. We present a novel solution to this problem in the form of a continuous-time, two-timescale stochastic gradient descent algorithm, which recursively seeks to maximize the asymptotic log-likelihood of the obser-vations with respect to the unknown model parameters and to minimize the expected mean squared error of the hidden state estimate with respect to the sensor locations. We also provide extensive numerical results illustrating the performance of the proposed approach in the case that the hidden signal is governed by the two-dimensional stochastic advection-diffusion equation.
引用
收藏
页码:55 / 95
页数:41
相关论文
共 124 条
[1]  
Aidarous S., 1978, DISTRIBUTED PARAMETE, V1, P81, DOI DOI 10.1007/BFB0003732
[2]   MAXIMUM-LIKELIHOOD ESTIMATE FOR DISCONTINUOUS PARAMETER IN STOCHASTIC HYPERBOLIC SYSTEMS [J].
AIHARA, S .
ACTA APPLICANDAE MATHEMATICAE, 1994, 35 (1-2) :131-151
[3]   REGULARIZED MAXIMUM-LIKELIHOOD ESTIMATE FOR AN INFINITE-DIMENSIONAL PARAMETER IN STOCHASTIC PARABOLIC-SYSTEMS [J].
AIHARA, SI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (04) :745-764
[4]   IDENTIFICATION OF AN INFINITE-DIMENSIONAL PARAMETER FOR STOCHASTIC DIFFUSION-EQUATIONS [J].
AIHARA, SI ;
SUNAHARA, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1062-1075
[5]   PARAMETER-IDENTIFICATION FOR HYPERBOLIC STOCHASTIC-SYSTEMS [J].
AIHARA, SI ;
BAGCHI, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (02) :485-499
[6]  
Amouroux M., 1978, Proceedings of the IFIP Working Conference on Distributed Parameter Systems Modelling and Identification, P92, DOI 10.1007/BFb0003733
[7]  
[Anonymous], 2012, ARXIV
[8]  
[Anonymous], 2015, P INT C LEARN REPR
[9]   DETERMINATION OF OPTIMAL COSTLY MEASUREMENT STRATEGIES FOR LINEAR STOCHASTIC SYSTEMS [J].
ATHANS, M .
AUTOMATICA, 1972, 8 (04) :397-412
[10]  
Bagchi A., 1981, Proceedings of the 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, P62