Circular Slit Maps of Multiply Connected Regions with Application to Brain Image Processing

被引:3
|
作者
Sangawi, Ali W. K. [1 ]
Murid, Ali H. M. [2 ]
Lee, Khiy Wei [2 ]
机构
[1] Charmo Univ, Coll Med & Appl Sci, Dept Appl Comp, Sulaimani 46023, Kurdistan, Iraq
[2] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Utm Johor Bahru 81310, Johor, Malaysia
关键词
Numerical conformal mapping; Boundary integral equations; Multiply connected regions; Neumann-type kernel; Generalized Neumann kernel; GMRES; Fast multipole method; Medical image processing; BOUNDARY INTEGRAL-EQUATION; ALGORITHM;
D O I
10.1007/s40840-020-00942-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a fast boundary integral equation method for the numerical conformal mapping and its inverse of bounded multiply connected regions onto a disk and annulus with circular slits regions. The method is based on two uniquely solvable boundary integral equations with Neumann-type and generalized Neumann kernels. The integral equations related to the mappings are solved numerically using combination of Nystrom method, GMRES method, and fast multipole method. The complexity of this new algorithm is O((M+1)n), where M+1 stands for the multiplicity of the multiply connected region and n refers to the number of nodes on each boundary component. Previous algorithms require O((M+1)3n3) operations. The numerical results of some test calculations demonstrate that our method is capable of handling regions with complex geometry and very high connectivity. An application of the method on medical human brain image processing is also presented.
引用
收藏
页码:171 / 202
页数:32
相关论文
共 50 条
  • [1] Circular Slit Maps of Multiply Connected Regions with Application to Brain Image Processing
    Ali W. K. Sangawi
    Ali H. M. Murid
    Khiy Wei Lee
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 171 - 202
  • [2] Radial Slit Maps of Bounded Multiply Connected Regions
    Ali W. K. Sangawi
    Ali H. M. Murid
    M. M. S. Nasser
    Journal of Scientific Computing, 2013, 55 : 309 - 326
  • [3] Radial Slit Maps of Bounded Multiply Connected Regions
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Nasser, M. M. S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 309 - 326
  • [4] Radial and circular slit maps of unbounded multiply connected circle domains
    Delillo, T. K.
    Driscoll, T. A.
    Elcrat, A. R.
    Pfaltzgraff, J. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2095): : 1719 - 1737
  • [5] Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions
    Yunus, A. A. M.
    Murid, A. H. M.
    Nasser, M. M. S.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2012, 8 (01): : 38 - 43
  • [6] Riemann-Hilbert Problems for Multiply Connected Domains and Circular Slit Maps
    Vladimir Mityushev
    Computational Methods and Function Theory, 2012, 11 (2) : 575 - 590
  • [7] Riemann-Hilbert Problems for Multiply Connected Domains and Circular Slit Maps
    Mityushev, Vladimir
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2011, 11 (02) : 575 - 590
  • [8] SLIT MAPS AND SCHWARZ-CHRISTOFFEL MAPS FOR MULTIPLY CONNECTED DOMAINS
    Delillo, Thomas K.
    Kropf, Everett H.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 36 : 195 - 223
  • [9] Annulus with Circular Slit Map of Bounded Multiply Connected Regions via Integral Equation Method
    Sangawi, Ali W. K.
    Murid, Ali H. M.
    Nasser, M. M. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (04) : 945 - 959
  • [10] APPLICATION OF THE CVBEM TO MULTIPLY CONNECTED REGIONS
    HROMADKA, TV
    APPLIED MATHEMATICAL MODELLING, 1990, 14 (04) : 212 - 216