Boosting Solar Cell Photovoltage via Nanophotonic Engineering

被引:52
作者
Cui, Y. [1 ]
van Dam, D. [1 ]
Mann, S. A. [2 ]
van Hoof, N. J. J. [1 ]
van Veldhoven, P. J. [1 ]
Garnett, E. C. [2 ]
Bakkers, E. P. A. M. [1 ,3 ]
Haverkort, J. E. M. [1 ]
机构
[1] Eindhoven Univ Technol, Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] FOM Inst AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
关键词
Nanophotonics; photovoltaics; nanowires; photovoltage; open circuit voltage; SHOCKLEY-QUEISSER LIMIT; QUANTUM EFFICIENCY; SILICON NANOWIRE; RAY OPTICS; ABSORPTION; LUMINESCENCE; EMISSION; ARRAYS; NANOSTRUCTURES; RECOMBINATION;
D O I
10.1021/acs.nanolett.6b02971
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Approaching the theoretically limiting open circuit voltage (V-oc) of solar cells is crucial to optimize their photovoltaic performance. Here, we demonstrate experimentally that nanostructured layers can achieve a fundamentally larger Fermi level splitting, and thus a larger V-oc, than planar layers. By etching tapered nanowires from planar indium phosphide (InP), we directly compare planar and nanophotonic geometries with the exact same material quality. We show that the external radiative efficiency of the nanostructured layer at 1 sun is increased by a factor 14 compared to the planar layer, leading to a 70 mV enhancement in V-oc. The higher voltage arises from both the enhanced outcoupling of photons, which promotes radiative recombination, and the lower active material volume, which reduces bulk recombination. These effects are generic and promise to enhance the efficiency of current record planar solar cells made from other materials as well.
引用
收藏
页码:6467 / 6471
页数:5
相关论文
共 40 条
[1]   Shockley-Queisser Detailed Balance Efficiency Limit for Nanowire Solar Cells [J].
Anttu, Nicklas .
ACS PHOTONICS, 2015, 2 (03) :446-453
[2]  
Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
[3]   THE LIMITING EFFICIENCY OF SILICON SOLAR-CELLS UNDER CONCENTRATED SUNLIGHT [J].
CAMPBELL, P ;
GREEN, MA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1986, 33 (02) :234-239
[4]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[5]   REDUCTION OF LENS REFLECTION BY MOTH EYE PRINCIPLE [J].
CLAPHAM, PB ;
HUTLEY, MC .
NATURE, 1973, 244 (5414) :281-282
[6]   A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J].
Claudon, Julien ;
Bleuse, Joel ;
Malik, Nitin Singh ;
Bazin, Maela ;
Jaffrennou, Perine ;
Gregersen, Niels ;
Sauvan, Christophe ;
Lalanne, Philippe ;
Gerard, Jean-Michel .
NATURE PHOTONICS, 2010, 4 (03) :174-177
[7]   Strong Geometrical Dependence of the Absorption of Light in Arrays of Semiconductor Nanowires [J].
Diedenhofen, Silke L. ;
Janssen, Olaf T. A. ;
Grzela, Grzegorz ;
Bakkers, Erik P. A. M. ;
Rivas, Jaime Gomez .
ACS NANO, 2011, 5 (03) :2316-2323
[8]   The Voltage Boost Enabled by Luminescence Extraction in Solar Cells [J].
Ganapati, Vidya ;
Steiner, Myles A. ;
Yablonovitch, Eli .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (04) :801-809
[9]   Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing [J].
Gao, Qian ;
Saxena, Dhruv ;
Wang, Fan ;
Fu, Lan ;
Mokkapati, Sudha ;
Guo, Yanan ;
Li, Li ;
Wong-Leung, Jennifer ;
Caroff, Philippe ;
Tan, Hark Hoe ;
Jagadish, Chennupati .
NANO LETTERS, 2014, 14 (09) :5206-5211
[10]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087