An ice-core based history of Siberian forest fires since AD 1250

被引:75
作者
Eichler, Anja [1 ,2 ]
Tinner, Willy [2 ,3 ]
Bruetsch, Sabina [1 ]
Olivier, Susanne [1 ,4 ]
Papina, Tatyana [5 ]
Schwikowski, Margit [1 ,2 ,4 ]
机构
[1] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[3] Univ Bern, Inst Plant Sci, CH-3013 Bern, Switzerland
[4] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
[5] Inst Water & Environm Problems, Barnaul 656038, Russia
基金
瑞士国家科学基金会;
关键词
Palaeoecology; Ice core; Altai; Fire history; Charcoal; Pollen; PACIFIC DECADAL OSCILLATION; NORTH-ATLANTIC OSCILLATION; PAST; CENTURIES; CLIMATE VARIABILITY; TEMPORAL VARIATIONS; COUNT SUMS; POLLEN; ACCUMULATION; MILLENNIUM; IMPACTS;
D O I
10.1016/j.quascirev.2011.02.007
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1027 / 1034
页数:8
相关论文
共 51 条
[1]   The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests [J].
Achard, Frederic ;
Eva, Hugh D. ;
Mollicone, Danilo ;
Beuchle, Rene .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1501) :2331-2339
[2]   Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet) [J].
Aizen, Vladimir B. ;
Aizen, Elena M. ;
Joswiak, Daniel R. ;
Fujita, Koji ;
Takeuchi, Nozomu ;
Nikitin, Stanislav A. .
ANNALS OF GLACIOLOGY, VOL 43, 2006, 2006, 43 :49-+
[3]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[4]   Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record [J].
Andreev, Andrei A. ;
Pierau, Roberto ;
Kalugin, Ivan A. ;
Daryin, Andrei V. ;
Smolyaninova, Lyubov G. ;
Diekmann, Bernhard .
QUATERNARY RESEARCH, 2007, 67 (03) :394-399
[5]   Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and east Siberia [J].
Balzter, Heiko ;
Gerard, France ;
George, Charles ;
Weedon, Graham ;
Grey, Will ;
Combal, Bruno ;
Bartholome, Etienne ;
Bartalev, Sergey ;
Los, Sietse .
JOURNAL OF CLIMATE, 2007, 20 (15) :3713-3729
[6]   Pollen representation in surface samples of the Juniperus, Picea and Juglans forest belts of Kyrgyzstan, central Asia [J].
Beer, Ruth ;
Tinner, Willy ;
Carraro, Gabriele ;
Grisa, Ennio .
HOLOCENE, 2007, 17 (05) :599-611
[7]  
Biondi F, 2001, J CLIMATE, V14, P5, DOI 10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO
[8]  
2
[9]   Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia) [J].
Blyakharchuk, T. A. ;
Wright, H. E. ;
Borodavko, P. S. ;
van der Knaap, W. O. ;
Ammann, B. .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 245 (3-4) :518-534
[10]   Time lags and novel ecosystems in response to transient climatic change in arctic Alaska [J].
Chapin III F.S. ;
Starfield A.M. .
Climatic Change, 1997, 35 (4) :449-461