Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma

被引:18
作者
Jolissaint, Joshua S. [1 ,2 ]
Wang, Tiegong [1 ,3 ]
Soares, Kevin C. [1 ]
Chou, Joanne F. [4 ]
Gonen, Mithat [4 ]
Pak, Linda M. [1 ,2 ]
Boerner, Thomas [1 ]
Do, Richard K. G. [5 ]
Balachandran, Vinod P. [1 ]
D'Angelica, Michael, I [1 ]
Drebin, Jeffrey A. [1 ]
Kingham, T. P. [1 ]
Wei, Alice C. [1 ]
Jarnagin, William R. [1 ]
Chakraborty, Jayasree [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Surg, 1275 York Ave,C-891, New York, NY 10065 USA
[2] Brigham & Womens Hosp, Dept Surg, 75 Francis St, Boston, MA 02115 USA
[3] Cangzhou Cent Hosp, Dept Surg, Cangzhou, Hebei, Peoples R China
[4] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
关键词
SURVIVAL; TEXTURE; CLASSIFICATION; HETEROGENEITY; INFORMATION; IMAGES;
D O I
10.1016/j.hpb.2022.02.004
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background: Most patients recur after resection of intrahepatic cholangiocarcinoma (IHC). We studied whether machine-learning incorporating radiomics and tumor size could predict intrahepatic recurrence within 1-year. Methods: This was a retrospective analysis of patients with IHC resected between 2000 and 2017 who had evaluable computed tomography imaging. Texture features (TFs) were extracted from the liver, tumor, and future liver remnant (FLR). Random forest classification using training (70.3%) and validation cohorts (29.7%) was used to design a predictive model. Results: 138 patients were included for analysis. Patients with early recurrence had a larger tumor size (7.25 cm [IQR 5.2-8.9] vs. 5.3 cm [IQR 4.0- 7.2], P = 0.011) and a higher rate of lymph node metastasis (28.6% vs. 11.6%, P = 0.041), but were not more likely to have multifocal disease (21.4% vs. 17.4%, P = 0.643). Three TFs from the tumor, FD1, FD30, and IH4 and one from the FLR, ACM15, were identified by feature selection. Incorporation of TFs and tumor size achieved the highest AUC of 0.84 (95% CI 0.73- 0.95) in predicting recurrence in the validation cohort. Conclusion: This study demonstrates that radiomics and machine-learning can reliably predict patients at risk for early intrahepatic recurrence with good discrimination accuracy.
引用
收藏
页码:1341 / 1350
页数:10
相关论文
共 55 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics? [J].
Aherne, Emily A. ;
Pak, Linda M. ;
Goldman, Debra A. ;
Gonen, Mithat ;
Jarnagin, William R. ;
Simpson, Amber L. ;
Do, Richard K. .
ABDOMINAL RADIOLOGY, 2018, 43 (10) :2665-2672
[3]   Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe [J].
Albano, Domenico ;
Benenati, Massimo ;
Bruno, Antonio ;
Bruno, Federico ;
Calandri, Marco ;
Caruso, Damiano ;
Cozzi, Diletta ;
De Robertis, Riccardo ;
Gentili, Francesco ;
Grazzini, Irene ;
Micci, Giuseppe ;
Palmisano, Anna ;
Pessina, Carlotta ;
Scalise, Paola ;
Vernuccio, Federica ;
Barile, Antonio ;
Miele, Vittorio ;
Grassi, Roberto ;
Messina, Carmelo .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[4]   Analysis of survival by tumor response and other comparisons of time-to-event by outcome variables [J].
Anderson, James R. ;
Cain, Kevin C. ;
Gelber, Richard D. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (24) :3913-3915
[5]   Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Gazit, Lior ;
Langdon-Embry, Liana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Do, Richard K. ;
Simpson, Amber L. .
HPB, 2019, 21 (02) :212-218
[6]   Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Doussot, Alexandre ;
Langdon-Embry, Liana ;
Mainarich, Shiana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Simpson, Amber L. ;
Do, Richard K. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (04) :1034-1042
[7]   Intrahepatic cholangiocarcinoma tumor burden: A classification and regression tree model to define prognostic groups after resection [J].
Bagante, Fabio ;
Spolverato, Gaya ;
Merath, Katiuscha ;
Weiss, Matthew ;
Alexandrescu, Sorin ;
Marques, Hugo P. ;
Aldrighetti, Luca ;
Maithel, Shishir K. ;
Pulitano, Carlo ;
Bauer, Todd W. ;
Shen, Feng ;
Poultsides, George A. ;
Soubrane, Olivier ;
Martel, Guillaume ;
Koerkamp, B. Groot ;
Guglielmi, Alfredo ;
Endo, Itaru ;
Pawlik, Timothy M. .
SURGERY, 2019, 166 (06) :983-990
[8]   Genetic Determinants of Outcome in Intrahepatic Cholangiocarcinoma [J].
Boerner, Thomas ;
Drill, Esther ;
Pak, Linda M. ;
Nguyen, Bastien ;
Sigel, Carlie S. ;
Doussot, Alexandre ;
Shin, Paul ;
Goldman, Debra A. ;
Gonen, Mithat ;
Allen, Peter J. ;
Balachandran, Vinod P. ;
Cercek, Andrea ;
Harding, James ;
Solit, David B. ;
Schultz, Nikolaus ;
Kundra, Ritika ;
Walch, Henry ;
D'Angelica, Michael, I ;
DeMatteo, Ronald P. ;
Drebin, Jeffrey ;
Kemeny, Nancy E. ;
Kingham, T. Peter ;
Simpson, Amber L. ;
Hechtman, Jaclyn F. ;
Vakiani, Efsevia ;
Lowery, Maeve A. ;
Ijzermans, J. N. M. ;
Buettner, S. ;
Koerkamp, B. Groot ;
Doukas, M. ;
Chandwani, Rohit ;
Jarnagin, William R. .
HEPATOLOGY, 2021, 74 (03) :1429-1444
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   The modified box-counting method: Analysis of some characteristic parameters [J].
Buczkowski, S ;
Kyriacos, S ;
Nekka, F ;
Cartilier, L .
PATTERN RECOGNITION, 1998, 31 (04) :411-418