Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting

被引:350
作者
Roxworthy, Brian J. [2 ]
Ko, Kaspar D. [1 ]
Kumar, Anil [2 ]
Fung, Kin Hung [4 ]
Chow, Edmond K. C. [5 ]
Liu, Gang Logan [2 ]
Fang, Nicholas X. [4 ]
Toussaint, Kimani C., Jr. [1 ,3 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn & Bioengn, Urbana, IL 61801 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] Univ Illinois Urbana Champiagn, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Plasmonics; optical nanoantennas; optical trapping; particle sorting; optical trapping phase diagrams; TWEEZERS;
D O I
10.1021/nl203811q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present the use of Au bowtie nanoantenna arrays (BNAs) for highly efficient, multipurpose particle manipulation with unprecedented low input power and low-numerical aperture (NA) focusing. Optical trapping efficiencies measured are up to 20X the efficiencies of conventional high-NA optical traps and are among the highest reported to date. Empirically obtained plasmonic optical trapping "phase diagrams" are introduced to detail the trapping response of the BNAs as a function of input power, wavelength, polarization, particle diameter, and BNA array spacing (number density). Using these diagrams, parameters are chosen, employing strictly the degrees-of-freedom of the input light, to engineer specific trapping tasks including (1) dexterous, single-particle trapping and manipulation, (2) trapping and manipulation of two- and three-dimensional particle clusters, and (3) particle sorting. The use of low input power densities (power and NA) suggests that this bowtie nanoantenna trapping system will be particularly attractive for lab-on-a-chip technology or biological applications aimed at reducing specimen photodamage.
引用
收藏
页码:796 / 801
页数:6
相关论文
共 35 条
[1]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[2]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[3]   Trapping of DNA by thermophoretic depletion and convection [J].
Braun, D ;
Libchaber, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-188103
[4]   OPTICAL MATTER - CRYSTALLIZATION AND BINDING IN INTENSE OPTICAL-FIELDS [J].
BURNS, MM ;
FOURNIER, JM ;
GOLOVCHENKO, JA .
SCIENCE, 1990, 249 (4970) :749-754
[5]   The plasmon Talbot effect [J].
Dennis, Mark R. ;
Zheludev, Nikolay I. ;
Garcia de Abajo, F. Javier .
OPTICS EXPRESS, 2007, 15 (15) :9692-9700
[6]   A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes [J].
Eriksson, Emma ;
Enger, Jonas ;
Nordlander, Bodil ;
Erjavec, Nika ;
Ramser, Kerstin ;
Goksor, Mattias ;
Hohmann, Stefan ;
Nystrom, Thomas ;
Hanstorp, Dag .
LAB ON A CHIP, 2007, 7 (01) :71-76
[7]   Optical tweezers study life under tension [J].
Fazal, Furqan M. ;
Block, Steven M. .
NATURE PHOTONICS, 2011, 5 (06) :318-321
[8]   Extended organization of colloidal microparticles by surface plasmon polariton excitation [J].
Garcés-Chávez, V ;
Quidant, R ;
Reece, PJ ;
Badenes, G ;
Torner, L ;
Dholakia, K .
PHYSICAL REVIEW B, 2006, 73 (08)
[9]  
Getling AV, 1998, RAYLEIGHBENARD CONVE, P9
[10]   Holographic optical trapping [J].
Grier, DG ;
Roichman, Y .
APPLIED OPTICS, 2006, 45 (05) :880-887