On the geometry of orthonormal frame bundles II

被引:6
|
作者
Kowalski, Oldrich [1 ]
Sekizawa, Masami [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
[2] Tokyo Gakugei Univ, Dept Math, Tokyo 1848501, Japan
关键词
Riemannian manifold; homogeneous space; orthonormal frame bundle; Einstein space; ricci curvature; scalar curvature;
D O I
10.1007/s10455-007-9091-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of orthonormal frame bundles OM over Riemannian manifolds ( M, g). The former are equipped with some modifications (g) over tilde (c) of the Sasaki-Mok metric (g) over tilde depending on one real parameter c not equal 0. The metrics (g) over tilde (c) are " strongly invariant" in some special sense. In particular, we consider the case when ( M, g) is a space of constant sectional curvature K. Then, for dim M > 2, we find always, among the metrics (g) over tilde (c), two strongly invariant Einstein metrics on OM which are Riemannian for K > 0 and pseudo-Riemannian for K < 0. At least one of them is not locally symmetric. We also find, for dim M >= 2, two invariant metrics with vanishing scalar curvature.
引用
收藏
页码:357 / 371
页数:15
相关论文
共 50 条
  • [1] On the geometry of orthonormal frame bundles II
    Oldřich Kowalski
    Masami Sekizawa
    Annals of Global Analysis and Geometry, 2008, 33 : 357 - 371
  • [2] On Riemannian geometry of orthonormal frame bundles
    Sekizawa, Masami
    NOTE DI MATEMATICA, 2008, 28 : 383 - 394
  • [3] ISOMETRY GROUPS OF ORTHONORMAL FRAME BUNDLES
    FISHER, RJ
    LEE, KB
    GEOMETRIAE DEDICATA, 1986, 21 (02) : 181 - 186
  • [4] ON THE GEOMETRY OF FRAME BUNDLES
    Niedzialomski, Kamil
    ARCHIVUM MATHEMATICUM, 2012, 48 (03): : 197 - 206
  • [5] DIFFERENTIAL GEOMETRY OF FRAME BUNDLES OF RIEMANNIAN MANIFOLDS
    MOK, KP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 302 : 16 - 31
  • [6] Clifford Bundles: A Common Framework for Image, Vector Field, and Orthonormal Frame Field Regularization
    Batard, Thomas
    SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03): : 670 - 701
  • [7] EQUIVARIANT SYMPLECTIC GEOMETRY OF COTANGENT BUNDLES, II
    Timashev, D. A.
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (02) : 389 - 404
  • [8] On the geometry of tangent bundles with the metric II plus III
    Gezer, A.
    Tarakci, O.
    Salimov, A. A.
    ANNALES POLONICI MATHEMATICI, 2010, 97 (01) : 73 - 85
  • [9] Sasakian geometry on sphere bundles II: Constant scalar curvature
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 96
  • [10] Martingales on frame bundles
    Catuogno, Pedro
    Stelmastchuk, Simao
    POTENTIAL ANALYSIS, 2008, 28 (01) : 61 - 69