An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis

被引:171
作者
Zhang, Kewei [1 ]
Xia, Xiuying [1 ]
Zhang, Yanyan [1 ]
Gan, Su-Sheng [1 ]
机构
[1] Cornell Univ, Dept Hort, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
SAG113; PP2C-type protein phosphatase; ABA signaling transduction pathway; stomatal movement; leaf senescence; ABSCISIC-ACID; NEGATIVE REGULATOR; GENE-EXPRESSION; 2C; PLANT; ABI1; STRESS; TRANSCRIPTOME; PATHWAYS; ENCODES;
D O I
10.1111/j.1365-313X.2011.04821.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1?). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.
引用
收藏
页码:667 / 678
页数:12
相关论文
共 52 条
[1]   ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis [J].
Adie, Bruce A. T. ;
Perez-Perez, Julian ;
Perez-Perez, Manuel M. ;
Godoy, Marta ;
Sanchez-Serrano, Jose-J. ;
Schmelz, Eric A. ;
Solano, Roberto .
PLANT CELL, 2007, 19 (05) :1665-1681
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J].
Buchanan-Wollaston, V ;
Page, T ;
Harrison, E ;
Breeze, E ;
Lim, PO ;
Nam, HG ;
Lin, JF ;
Wu, SH ;
Swidzinski, J ;
Ishizaki, K ;
Leaver, CJ .
PLANT JOURNAL, 2005, 42 (04) :567-585
[4]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[5]  
Finkelstein Ruth R, 2002, Arabidopsis Book, V1, pe0058, DOI 10.1199/tab.0058
[6]   Making sense of senescence - Molecular genetic regulation and manipulation of leaf senescence [J].
Gan, SS ;
Amasino, RM .
PLANT PHYSIOLOGY, 1997, 113 (02) :313-319
[7]   CHANGES IN THE ABSCISIC-ACID CONTENT OF OAT LEAVES DURING SENESCENCE [J].
GEPSTEIN, S ;
THIMANN, KV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (04) :2050-2053
[8]   Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination [J].
González-García, MP ;
Rodríguez, D ;
Nicolás, C ;
Rodríguez, PL ;
Nicolás, G ;
Lorenzo, O .
PLANT PHYSIOLOGY, 2003, 133 (01) :135-144
[9]   ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling [J].
Gosti, F ;
Beaudoin, N ;
Serizet, C ;
Webb, AAR ;
Vartanian, N ;
Giraudat, J .
PLANT CELL, 1999, 11 (10) :1897-1909
[10]   Transcriptome of Arabidopsis leaf senescence [J].
Guo, Y ;
Cai, Z ;
Gan, S .
PLANT CELL AND ENVIRONMENT, 2004, 27 (05) :521-549