Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications

被引:131
作者
Andrade, Raquel G. D. [1 ]
Veloso, Sergio R. S. [1 ]
Castanheira, Elisabete M. S. [1 ]
机构
[1] Univ Minho, Ctr Phys CFUM, Campus Gualtar, P-4710057 Braga, Portugal
关键词
anisotropy; magnetic nanoparticles; hyperthermia; magnetic resonance imaging; drug delivery; MANGANESE FERRITE NANOPARTICLES; POROUS COFE2O4 NANOSHEETS; LARGE-SCALE SYNTHESIS; DRUG-DELIVERY; FACILE SYNTHESIS; CONTRAST AGENTS; IN-VIVO; ELECTROCHEMICAL SYNTHESIS; FE3O4; NANOPARTICLES; CANCER-DIAGNOSIS;
D O I
10.3390/ijms21072455
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Research on iron oxide-based magnetic nanoparticles and their clinical use has been, so far, mainly focused on the spherical shape. However, efforts have been made to develop synthetic routes that produce different anisotropic shapes not only in magnetite nanoparticles, but also in other ferrites, as their magnetic behavior and biological activity can be improved by controlling the shape. Ferrite nanoparticles show several properties that arise from finite-size and surface effects, like high magnetization and superparamagnetism, which make them interesting for use in nanomedicine. Herein, we show recent developments on the synthesis of anisotropic ferrite nanoparticles and the importance of shape-dependent properties for biomedical applications, such as magnetic drug delivery, magnetic hyperthermia and magnetic resonance imaging. A brief discussion on toxicity of iron oxide nanoparticles is also included.
引用
收藏
页数:25
相关论文
共 197 条
[1]   Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube [J].
Abbas, Mohamed ;
Takahashi, Migaku ;
Kim, CheolGi .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (01)
[2]   Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method [J].
Ahn, Taebin ;
Kim, Jong Hun ;
Yang, Hee-Man ;
Lee, Jeong Woo ;
Kim, Jong-Duk .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (10) :6069-6076
[3]   Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine [J].
Akbarzadeh, Abolfazl ;
Samiei, Mohamad ;
Davaran, Soodabeh .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-13
[4]   Synthesis, characterization, applications, and challenges of iron oxide nanoparticles [J].
Ali, Attarad ;
Zafar, Hira ;
Zia, Muhammad ;
Haq, Ihsan Ul ;
Phull, Abdul Rehman ;
Ali, Joham Sarfraz ;
Hussain, Altaf .
NANOTECHNOLOGY SCIENCE AND APPLICATIONS, 2016, 9 :49-67
[5]   What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? [J].
Amendola, Vincenzo ;
Meneghetti, Moreno .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (09) :3027-3046
[6]   Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation [J].
Amendola, Vincenzo ;
Meneghetti, Moreno ;
Granozzi, Gaetano ;
Agnoli, Stefano ;
Polizzi, Stefano ;
Riello, Pietro ;
Boscaini, Anita ;
Anselmi, Cristina ;
Fracasso, Giulio ;
Colombatti, Marco ;
Innocenti, Claudia ;
Gatteschi, Dante ;
Sangregorio, Claudio .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (11) :3803-3813
[7]   Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents [J].
Amendola, Vincenzo ;
Riello, Pietro ;
Meneghetti, Moreno .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (12) :5140-5146
[8]  
[Anonymous], 2012, Drug Discov Today Technol, V9, pe71, DOI 10.1016/j.ddtec.2011.11.010
[9]   In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles [J].
Arami, Hamed ;
Khandhar, Amit ;
Liggitt, Denny ;
Krishnan, Kannan M. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (23) :8576-8607
[10]   Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity [J].
Arias, Lais Salomao ;
Pessan, Juliano Pelim ;
Miranda Vieira, Ana Paula ;
Toito de Lima, Taynara Maria ;
Botazzo Delbem, Alberto Carlos ;
Monteiro, Douglas Roberto .
ANTIBIOTICS-BASEL, 2018, 7 (02)