A MONOTONICITY THEOREM FOR THE GENERALIZED ELLIPTIC INTEGRAL OF THE FIRST KIND

被引:3
作者
Bao, Qi [1 ]
Ren, Xue-Jing [2 ]
Wang, Miao-Kun [3 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Jiangsu, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
Generalized elliptic integrals; Complete elliptic integrals; Psi function; INEQUALITIES;
D O I
10.2298/AADM201005031B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a E (0, 1/2] and r E (0, 1), let Xa(r) (X (r)) denote the generalized elliptic integral (complete elliptic integral, respectively) of the first kind. In this article, we mainly present a sufficient and necessary condition under which the function a 7 -> [X (r) - Xa(r)]/(1 - 2a)lambda(lambda E R) is monotone on (0, 1/2) for each fixed r E (0, 1). The obtained result leads to the conclusion that inequalityX (r) - (1 - 2a)alpha [X (r) - pi ] < Xa(r) < X (r) - (1 - 2a)beta [X (r) - pi ] 2 2holds for all a E (0, 1/2] and r E (0, 1) with the best possible constants alpha = pi /2 and beta = 2.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 30 条
[1]  
Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55, DOI DOI 10.1119/1.15378
[2]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[3]   Modular equations and distortion functions [J].
Anderson, G. D. ;
Qiu, S. -L. ;
Vuorinen, M. .
RAMANUJAN JOURNAL, 2009, 18 (02) :147-169
[4]   Generalized elliptic integrals and modular equations [J].
Anderson, GD ;
Qiu, SL ;
Vamanamurthy, MK ;
Vuorinen, M .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (01) :1-37
[5]  
Anderson GD., 1997, Conformal invariants, inequalities, and quasiconformal maps
[6]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[7]  
[Anonymous], 1977, Special Functions of Applied Mathematics
[8]  
Berndt B.C., 1989, Ramanujan's Notebooks
[9]   RAMANUJANS THEORIES OF ELLIPTIC FUNCTIONS TO ALTERNATIVE BASES [J].
BERNDT, BC ;
BHARGAVA, S ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4163-4244
[10]   SHARP INEQUALITIES INVOLVING THE POWER MEAN AND COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND [J].
Chu, Y. M. ;
Qiu, S. L. ;
Wang, M. K. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) :1489-1496