From algebraic cobordism to motivic cohomology

被引:57
作者
Hoyois, Marc [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 702卷
关键词
MODULES; SPECTRA; SLICES;
D O I
10.1515/crelle-2013-0038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be an essentially smooth scheme over a field of characteristic exponent c. We prove that there is a canonical equivalence of motivic spectra over S MGL/(a(1), a(2), . . .)[1/c] similar or equal to HZ[1/c] where HZ is the motivic cohomology spectrum, MGL is the algebraic cobordism spectrum, and the elements a(n) are generators of the Lazard ring. We discuss several applications including the computation of the slices of Z[1/c]-local Landweber exact motivic spectra and the convergence of the associated slice spectral sequences.
引用
收藏
页码:173 / 226
页数:54
相关论文
共 46 条
[1]  
ADAMEK J, 1994, LOCALLY PRESENTABLE
[2]  
Adams J. F., 1974, STABLE HOMOTOPY GEN
[3]  
[Anonymous], 1966, PUBL MATH I HAUTES E
[4]  
[Anonymous], PREPRINT
[5]  
Ayoub J., 2005, OBERWOLFACH REP, V2, P916
[6]  
Cisinski D.-C., 2012, PREPRINT
[7]   Motivic cell structures [J].
Dugger, Daniel ;
Isaksen, Daniel C. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 :615-652
[8]   The motivic Adams spectral sequence [J].
Dugger, Daniel ;
Isaksen, Daniel C. .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :967-1014
[9]  
Grothendieck A., 1967, PUBL MATH I HAUTES E, V32, P5, DOI 10.1007/BF02732123
[10]   Motivic slices and coloured operads [J].
Gutierrez, Javier J. ;
Roendigs, Oliver ;
Spitzweck, Markus ;
Ostvaer, Paul Arne .
JOURNAL OF TOPOLOGY, 2012, 5 (03) :727-755