A simple method of synthesising red pigments for ceramic glazes, based on gold nanoparticles protected by a refractory oxide capsule, was developed. Gold nanoparticles of an appropriate size were obtained by reaction in an aqueous medium between an Au(III) solution and an ammonium bromide solution, keeping the Br- concentration low during the process. The gold nanoparticles were encapsulated by adding the protective oxide in colloid form and subsequently coagulating it, alkalinising the medium. Diethylentriamine was then added to encourage the interaction between the gold nanoparticles and the oxide nanoparticles. This was followed by adding carboxymethylcellulose to raise medium viscosity, and to avoid segregation and subsequent agglomeration of the gold nanoparticles during drying. The dry residue was directly usable as a glaze pigment without requiring further thermal treatments. Three protective oxides, namely SiO2, Al2O3, and SnO2, were tested. In the three cases, pigments with a high colouring strength were obtained, which gave rise to reds of different shades in the resulting test glaze.