Existence and Asymptotic Behavior of Solutions to Semilinear Wave Equations with Nonlinear Damping and Dynamical Boundary Condition

被引:6
作者
Yassine, Hassan [1 ,2 ]
机构
[1] Univ Lorraine, Lab Math & Applicat Metz, F-57045 Metz 1, France
[2] CNRS, UMR 7122, F-57045 Metz 1, France
关键词
Asymptotic behavior of solutions; Lyapunov function; Stabilization; Dynamical boundary condition; Lojasiewicz-Simon inequality; ANALYTIC NONLINEARITY; CRITICAL EXPONENT; CONVERGENCE; DISSIPATION; EQUILIBRIUM; DECAY;
D O I
10.1007/s10884-012-9258-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this article is to study a nonautonomous semilinear wave equation with nonlinear damping and dynamical boundary condition. First we prove the existence and uniqueness of global bounded solutions having relatively compact range in the natural energy space. Then, by deriving an appropriate Lyapunov energy, we show that if the exponent in the Aojasiewicz-Simon inequality is large enough (depending on the damping), then weak solutions converge to equilibrium.
引用
收藏
页码:645 / 661
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[2]  
[Anonymous], 1990, SYSTEMES DYNAMIQUES
[3]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[4]   Convergence of Global and Bounded Solutions of Some Nonautonomous Second Order Evolution Equations with Nonlinear Dissipation [J].
Ben Hassen, I. ;
Chergui, L. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (02) :315-332
[5]   Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy [J].
Ben Hassen, Imen ;
Haraux, Alain .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (10) :2933-2963
[6]   Convergence of global and bounded solutions of the wave equation with nonlinear dissipation and analytic nonlinearity [J].
Chergui, L. .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (02) :405-418
[7]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[8]   On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation [J].
Chueshov, I ;
Eller, M ;
Lasiecka, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1901-1951
[9]  
Feireisl E., 2000, J DYN DIFFER EQU, V12, P647, DOI DOI 10.1023/A:1026467729263
[10]   CARACTERISATION DE QUELQUES ESPACES DINTERPOLATION [J].
GRISVARD, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :40-&