Oscillation results for nonlinear second-order damped dynamic equations

被引:7
作者
Wang, Jingjing [1 ,2 ]
EI-Sheikh, M. M. A.
Sallam, R. A. [3 ]
Elimy, D. I. [3 ]
Li, Tongxing [4 ,5 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Informat Sci & Technol, Qingdao 266061, Shandong, Peoples R China
[2] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Shandong, Peoples R China
[3] Menoufia Univ, Dept Math, Fac Sci, Shibin Al Kawm 32511, Egypt
[4] Linyi Univ, Shandong Prov Key Lab Network Based Intelligent C, Linda Inst, Linyi 276005, Shandong, Peoples R China
[5] Linyi Univ, Sch Informat, Linyi 276005, Shandong, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2015年 / 8卷 / 05期
基金
中国博士后科学基金;
关键词
Oscillation; second-order; nonlinear dynamic equation; damping term; time scale; DIFFERENTIAL-EQUATIONS; THEOREMS;
D O I
10.22436/jnsa.008.05.37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The oscillatory behavior of a class of second-order nonlinear dynamic equations with damping on an arbitrary time scale is considered without requiring explicit sign assumptions on the derivative of the nonlinearity. Several sufficient conditions for the oscillation of solutions are presented using the Riccati transformation and integral averaging technique. An illustrative example is provided. (C) 2015 All rights reserved.
引用
收藏
页码:877 / 883
页数:7
相关论文
共 18 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]   Oscillatory behavior of second-order half-linear damped dynamic equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 :408-418
[3]   Oscillation Theorems for Fourth-Order Half-Linear Delay Dynamic Equations with Damping [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) :463-475
[4]   Oscillation for nonlinear second order dynamic equations on a time scale [J].
Bohner, M ;
Erbe, L ;
Peterson, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :491-507
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[7]   Boundedness and oscillation for nonlinear dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :735-744
[8]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714
[9]  
Erbe L., 2003, CAN APPL MATH Q, V11, P143
[10]  
Fu X., 2013, ADV DIFFERENCE EQU, V2013