The impact of deceased donor maintenance on delayed kidney allograft function: A machine learning analysis

被引:21
作者
Costa, Silvana Daher [1 ,2 ,3 ]
Modelli de Andrade, Luis Gustavo [4 ]
Carvalho Barroso, Francisco Victor [1 ]
Costa de Oliveira, Claudia Maria [2 ,3 ]
de Francesco Daher, Elizabeth [1 ]
Branco Camurca Fernandes, Paula Frassinetti Castelo [2 ]
Esmeraldo, Ronaldo de Matos [3 ]
de Sandes-Freitas, Taina Veras [1 ,3 ]
机构
[1] Univ Fed Ceara, Fac Med, Dept Clin Med, Fortaleza, Ceara, Brazil
[2] Walter Cantidio Univ Hosp, Fortaleza, Ceara, Brazil
[3] Hosp Geral Fortaleza, Fortaleza, Ceara, Brazil
[4] Univ Estadual Paulista, Dept Internal Med, UNESP, Botucatu, SP, Brazil
关键词
GRAFT FUNCTION; RENAL-TRANSPLANTATION; PATIENT SURVIVAL; MANAGEMENT GOALS; CADAVERIC KIDNEY; PREDICTION; OUTCOMES; REGULARIZATION; MODELS; BRAZIL;
D O I
10.1371/journal.pone.0228597
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background This study evaluated the risk factors for delayed graft function (DGF) in a country where its incidence is high, detailing donor maintenance-related (DMR) variables and using machine learning (ML) methods beyond the traditional regression-based models. Methods A total of 443 brain dead deceased donor kidney transplants (KT) from two Brazilian centers were retrospectively analyzed and the following DMR were evaluated using predictive modeling: arterial blood gas pH, serum sodium, blood glucose, urine output, mean arterial pressure, vasopressors use, and reversed cardiac arrest. Results Most patients (95.7%) received kidneys from standard criteria donors. The incidence of DGF was 53%. In multivariable logistic regression analysis, DMR variables did not impact on DGF occurrence. In post-hoc analysis including only KT with cold ischemia time<21h (n = 220), urine output in 24h prior to recovery surgery (OR = 0.639, 95%CI 0.444-0.919) and serum sodium (OR = 1.030, 95%CI 1.052-1.379) were risk factors for DGF. Using elastic net regularized regression model and ML analysis (decision tree, neural network and support vector machine), urine output and other DMR variables emerged as DGF predictors: mean arterial pressure, >= 1 or high dose vasopressors and blood glucose. Conclusions Some DMR variables were associated with DGF, suggesting a potential impact of variables reflecting poor clinical and hemodynamic status on the incidence of DGF.
引用
收藏
页数:13
相关论文
共 27 条
[1]   Donor Hemodynamics as a Predictor of Outcomes After Kidney Transplantation From Donors After Cardiac Death [J].
Allen, M. B. ;
Billig, E. ;
Reese, P. P. ;
Shults, J. ;
Hasz, R. ;
West, S. ;
Abt, P. L. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2016, 16 (01) :181-193
[2]   Incidence of delayed graft function in cadaveric kidney transplants in Brazil:: A multicenter analysis [J].
Azevedo, LS ;
Castro, MCR ;
de Carvalho, DBM ;
d'Avila, DO ;
Contieri, F ;
Gonçalves, RT ;
Manfro, R ;
Ianhez, LE .
TRANSPLANTATION PROCEEDINGS, 2005, 37 (06) :2746-2747
[3]   Kidney allograft and patient survival in type I diabetic recipients of cadaveric kidney alone versus simultaneous pancreas/kidney transplants:: A multivariate analysis of the UNOS database [J].
Bunnapradist, S ;
Cho, YW ;
Cecka, JM ;
Wilkinson, A ;
Danovitch, GM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (01) :208-213
[4]   Is Delayed Graft Function Causally Associated With Long-Term Outcomes After Kidney Transplantation? Instrumental Variable Analysis [J].
Butala, Neel M. ;
Reese, Peter P. ;
Doshi, Mona D. ;
Parikh, Chirag R. .
TRANSPLANTATION, 2013, 95 (08) :1008-1014
[5]   Organ donor management and delayed graft function in kidney transplant recipients: A multicenter retrospective cohort study [J].
Cardinal, Heloise ;
Lamarche, Florence ;
Grondin, Stephanie ;
Marsolais, Pierre ;
Lagace, Anne-Marie ;
Duca, Anatolie ;
Albert, Martin ;
Houde, Isabelle ;
Boucher, Anne ;
Masse, Melanie ;
Baran, Dana ;
Bouchard, Josee .
AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 (01) :277-284
[6]   A useful scoring system for the prediction and management of delayed graft function following kidney transplantation from cadaveric donors [J].
Chapal, Marion ;
Le Borgne, Florent ;
Legendre, Christophe ;
Kreis, Henri ;
Mourad, Georges ;
Garrigue, Valerie ;
Morelon, Emmanuel ;
Buron, Fanny ;
Rostaing, Lionel ;
Kamar, Nassim ;
Kessler, Michele ;
Ladriere, Marc ;
Soulillou, Jean-Paul ;
Launay, Katy ;
Daguin, Pascal ;
Offredo, Lucile ;
Giral, Magali ;
Foucher, Yohann .
KIDNEY INTERNATIONAL, 2014, 86 (06) :1130-1139
[7]   Prolonged Delayed Graft Function Is Associated with Inferior Patient and Kidney Allograft Survivals [J].
de Sandes-Freitas, Taina Veras ;
Felipe, Claudia Rosso ;
Aguiar, Wilson Ferreira ;
Cristelli, Marina Pontello ;
Tedesco-Silva, Helio ;
Medina-Pestana, Jose Osmar .
PLOS ONE, 2015, 10 (12)
[8]   Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods [J].
Decruyenaere, Alexander ;
Decruyenaere, Philippe ;
Peeters, Patrick ;
Vermassen, Frank ;
Dhaene, Tom ;
Couckuyt, Ivo .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
[9]   The effect of delayed graft function on graft and patient survival in kidney transplantation: an approach using competing events analysis [J].
Fonseca, Isabel ;
Teixeira, Laetitia ;
Malheiro, Jorge ;
Martins, La Salete ;
Dias, Leonidio ;
Henriques, Antonio Castro ;
Mendonca, Denisa .
TRANSPLANT INTERNATIONAL, 2015, 28 (06) :738-750
[10]  
Franklin GA, 2010, AM SURGEON, V76, P587