Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing

被引:10
作者
He, Qixin [1 ,2 ]
Lou, Minhan [1 ]
Zheng, Chuantao [1 ,2 ]
Ye, Weilin [1 ,3 ]
Wang, Yiding [2 ]
Tittel, Frank K. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, 6100 Main St, Houston, TX 77005 USA
[2] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Jilin, Peoples R China
[3] Shantou Univ, Coll Engn, 243 Daxue Rd, Shantou 515063, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
infrared absorption spectroscopy; cavity enhanced absorption spectroscopy; gas sensor; SPECTROMETER; BAND; NOISE;
D O I
10.3390/s17122792
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A Pound-Drever-Hall (PDH)-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 mu m as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT) and proportional-integral-derivative (PID) feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 x 10(-8) cm(-1) was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Design of cavity-enhanced absorption cell for reducing transit-time broadening [J].
Abe, Masashi ;
Iwakuni, Kana ;
Okubo, Sho ;
Sasada, Hiroyuki .
OPTICS LETTERS, 2014, 39 (18) :5277-5280
[2]   Optical feedback cavity enhanced absorption spectroscopy with diode lasers [J].
Baran, Stuart G. ;
Hancock, Gus ;
Peverall, Robert ;
Ritchie, Grant A. D. ;
van Leeuwen, Nicola J. .
ANALYST, 2009, 134 (02) :243-249
[3]   An introduction to Pound-Drever-Hall laser frequency stabilization [J].
Black, ED .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) :79-87
[4]   Real-time multiplexed digital cavity-enhanced spectroscopy [J].
Boyson, Toby K. ;
Dagdigian, Paul J. ;
Pavey, Karl D. ;
Fitzgerald, Nicholas J. ;
Spence, Thomas G. ;
Moore, David S. ;
Harb, Charles C. .
OPTICS LETTERS, 2015, 40 (19) :4560-4562
[5]   External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation [J].
Centeno, R. ;
Mandon, J. ;
Cristescu, S. M. ;
Axner, O. ;
Harren, F. J. M. .
OPTICS EXPRESS, 2015, 23 (05) :6277-6282
[6]   Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer [J].
Cygan, A. ;
Lisak, D. ;
Maslowski, P. ;
Bielska, K. ;
Wojtewicz, S. ;
Domyslawska, J. ;
Trawinski, R. S. ;
Ciurylo, R. ;
Abe, H. ;
Hodges, J. T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (06)
[7]   Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser [J].
Dong, Lei ;
Li, Chunguang ;
Sanchez, Nancy P. ;
Gluszek, Aleksander K. ;
Griffin, Robert J. ;
Tittel, Frank K. .
APPLIED PHYSICS LETTERS, 2016, 108 (01)
[8]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105
[9]   Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential [J].
Foltynowicz, A. ;
Schmidt, F. M. ;
Ma, W. ;
Axner, O. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 92 (03) :313-326
[10]   Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet:: Application to HONO and NO2 [J].
Gherman, Titus ;
Venables, Dean S. ;
Vaughan, Stewart ;
Orphal, Johannes ;
Ruth, Albert A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (03) :890-895