Strong law of large numbers for supercritical superprocesses under second moment condition

被引:8
作者
Chen, Zhen-Qing [1 ]
Ren, Yan-Xia [2 ,3 ]
Song, Renming [4 ]
Zhang, Rui [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Peking Univ, LMAM Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Superprocess; scaling limit theorem; Hunt process; spectral gap; h-transform; martingale measure; HEAT KERNEL; NONSYMMETRIC DIFFUSIONS; ULTRACONTRACTIVITY; OPERATORS;
D O I
10.1007/s11464-015-0482-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a supercritical superprocess X = {X (t) , t a (c) 3/4 0} on a locally compact separable metric space (E,m). Suppose that the spatial motion of X is a Hunt process satisfying certain conditions and that the branching mechanism is of the form psi(x,lambda) = -a(x)lambda + b(x)lambda(2) + integral((0,+infinity)) (e(-lambda y) - 1 + lambda y)n(x,dy), x is an element of E, lambda > 0, where , , and n is a kernel from E to (0,+a) satisfying sup (xaE) a << (0) (+a) y (2) n(x, dy) < +a. Put . Suppose that the semigroup {T (t) ; t a (c) 3/4 0} is compact. Let lambda (0) be the eigenvalue of the (possibly non-symmetric) generator L of {T (t) } that has the largest real part among all the eigenvalues of L, which is known to be real-valued. Let I center dot (0) and be the eigenfunctions of L and (the dual of L) associated with lambda (0), respectively. Assume lambda (0) > 0. Under some conditions on the spatial motion and the I center dot (0)-transform of the semigroup {T (t) }, we prove that for a large class of suitable functions f, lim(t ->+infinity) e(-lambda 0t) < f,X-t > = W-infinity integral(E) (phi) over cap (0) (y)f(y)m(dy), P-mu-a.s., for any finite initial measure A mu on E with compact support, where W (a) is the martingale limit defined by . Moreover, the exceptional set in the above limit does not depend on the initial measure A mu and the function f.
引用
收藏
页码:807 / 838
页数:32
相关论文
共 30 条
[1]  
Bass RF, 2003, ANN PROBAB, V31, P791
[2]   An almost sure scaling limit theorem for Dawson-Watanabe superprocesses [J].
Chen, Zhen-Qing ;
Ren, Yan-Xia ;
Wang, Hao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (07) :1988-2019
[3]   Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 :111-138
[4]  
Chen ZQ, 2015, T AM MATH SOC, V367, P5237
[5]   Dirichlet heat kernel estimates for rotationally symmetric Levy processes [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 :90-120
[6]   DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
ANNALS OF PROBABILITY, 2012, 40 (06) :2483-2538
[7]  
Chen ZQ, 2010, REV MAT IBEROAM, V26, P551
[8]  
CHEN ZQ, 2015, PREPRINT
[9]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395
[10]  
Eckhoff M, ANN PROBAB IN PRESS