Experimental analysis and simulation of low-velocity impact damage of composite laminates

被引:60
|
作者
Falco, O. [1 ,2 ]
Lopes, C. S. [2 ,3 ]
Sommer, D. E. [1 ]
Thomson, D. [1 ]
Avila, R. L. [4 ]
Tijs, B. H. A. H. [5 ,6 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] IMDEA Mat Madrid Inst Adv Studies Mat, Madrid, Spain
[3] Luxembourg Inst Sci & Technol, Esch Sur Alzette, Luxembourg
[4] Autonomous Univ Coahuila, Saltillo, Coahuila, Mexico
[5] GKN Aerosp Fokker, Papendrecht, Netherlands
[6] Delft Univ Technol, Fac Aerosp Engn, Delft, Netherlands
关键词
Carbon fibre reinforced polymer; Impact behaviour; Finite Element Analysis (FEA); Computational modelling; DROP-WEIGHT IMPACT; COMPRESSION; MODEL; DELAMINATION; FAILURE; TESTS; BEHAVIOR;
D O I
10.1016/j.compstruct.2022.115278
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The capability to accurately analyse the response of multi-directional composite laminates during impact events is of high importance for the design of lightweight aircraft structures. In this work, both experimental and numerical analyses are performed covering a large design-space of laminates for all aspects from on-set of damage and barely visible impact damage up to clearly visible impact damage and full penetration of the laminates. The impact tests are simulated using a sophisticated three-dimensional continuum damage model, combined with an automated meso-scale model generation algorithm for ply-by-ply, material/fibre-aligned meshing of laminated composite coupons. To assess the accuracy of the predictions, an extensive validation test program of several configurations and impact energies has been performed, thus demonstrating that the simulations are capable of accurately predicting the damage and failure mechanisms under low-velocity impact loading. Not only the evolution of impact loads and energy dissipated are numerically analysed, but the competition of the dominant failure mechanisms from low impact energy and full penetration cases are also macroscopically replicated.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical simulation of low-velocity impact damage on stitched composite laminates
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Fuhe Cailiao Xuebao, 3 (715-724):
  • [2] Low-velocity impact and damage process of composite laminates
    Guan, ZD
    Yang, CD
    JOURNAL OF COMPOSITE MATERIALS, 2002, 36 (07) : 851 - 871
  • [3] A damage mechanics model for low-velocity impact damage analysis of composite laminates
    Li, N.
    Chen, P. H.
    Ye, Q.
    AERONAUTICAL JOURNAL, 2017, 121 (1238): : 515 - 532
  • [4] Dynamic Analysis on Composite Laminates Subjected to Low-velocity Impact Damage
    Qu, Peng
    Guan, Xiaojun
    Nie, Jiaqi
    Zhu, Guowei
    Jia, Yuxi
    POLYMERS & POLYMER COMPOSITES, 2013, 21 (09): : 613 - 618
  • [5] Finite element analysis of low-velocity impact damage in composite laminates
    Pradhan, B
    Kumar, S
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (04) : 322 - 339
  • [6] The simulation of low-velocity impact on composite laminates with the damage model based on strain
    Ma, Chunhao
    Xu, Fei
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI, 2013, 525-526 : 393 - +
  • [7] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9
  • [8] NUMERICAL AND EXPERIMENTAL STUDY FOR DAMAGE CHARACTERIZATION OF COMPOSITE LAMINATES SUBJECTED TO LOW-VELOCITY IMPACT
    Du, Jiangtao
    Tie, Ying
    Li, Cheng
    Zhou, Xihui
    MATERIALS PHYSICS AND MECHANICS, 2016, 27 (02): : 195 - 204
  • [9] Experimental Analysis of Low-Velocity Impact Behaviors of Carbon Fiber Composite Laminates
    Li X.K.
    Liu P.F.
    Journal of Failure Analysis and Prevention, 2017, 17 (6) : 1126 - 1130
  • [10] Coupled Analysis of Low-Velocity Impact Damage and Compression after Impact Strength of Composite Laminates
    Borkowski, Luke B.
    Kumar, Rajesh S.
    Palliyaguru, Upul R.
    JOURNAL OF AEROSPACE ENGINEERING, 2021, 34 (05)