The Hardy-Littlewood theorem for double Fourier-Haar series from mixed metric Lebesgue Lp[0,1]2 and net Np, q(M) spaces

被引:0
作者
Bashirova, A. N. [1 ]
Nursultanov, E. D. [2 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, 13 Kazhymukan Munaitpasov St,Z01C0X0, Nur Sultan, Kazakhstan
[2] Moscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St,Z01C0T6, Nur Sultan, Kazakhstan
关键词
net space; Lebesgue space; anisotropic space; Fourier series; Haar system; PALEY INEQUALITIES; INTERPOLATION; MULTIPLIERS;
D O I
10.1007/s10476-022-0115-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a criterion given in terms of the Fourier-Haar co-efficients for the function f(x(1), x(2)) to belong to the net space N-p,N- q(M) and to the Lebesgue space L-p[0, 1](2) with mixed metric, where 1 < p < infinity,0 < q <= infinity, p =(p(1), p(2)), q=(q(1), q(2)) and M is the set of all rectangles in Double-struck capital R-2. We prove the Hardy-Littlewood theorem for multiple Fourier-Haar series.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 28 条
[1]  
Akylzhanov R, 2017, EURASIAN MATH J, V8, P10
[2]   Lp-Lq multipliers on locally compact groups [J].
Akylzhanov, Rauan ;
Ruzhansky, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
[3]   Hardy-Littlewood, Hausdorff-Young-Paley inequalities, and LP- Lq Fourier multipliers on compact homogeneous manifolds [J].
Akylzhanov, Rauan ;
Ruzhansky, Michael ;
Nursultanov, Erlan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) :1519-1548
[4]   Hardy-Littlewood-Paley inequalities and Fourier multipliers on SU(2) [J].
Akylzhanov, Rauan ;
Nursultanov, Erlan ;
Ruzhansky, Michael .
STUDIA MATHEMATICA, 2016, 234 (01) :1-29
[5]   The Hardy-Littlewood theorem for Fourier-Haar series [J].
Aubakirov, TU ;
Nursultanov, ED .
MATHEMATICAL NOTES, 2003, 73 (3-4) :314-320
[6]  
Bashirova AN, 2021, RUSS MATH, V65, P1, DOI [10.26907/0021-3446-2021-8-3-15, 10.26907/0021-3446-2021-8-3-15, 10.3103/S1066369X21080016]
[7]  
Bekmaganbetov K, 2009, ANAL MATH, V35, P169, DOI 10.1007/s10476-009-0301-3
[8]  
COBOS F, 1991, P LOND MATH SOC, V63, P371
[9]   The Hardy-Littlewood theorem for multiple fourier series with monotone coefficients [J].
D'yachenko, M. I. ;
Nursultanov, E. D. ;
Nursultanov, M. E. .
MATHEMATICAL NOTES, 2016, 99 (3-4) :503-510
[10]   Hardy-type theorems on Fourier transforms revised [J].
Dyachenko, M. ;
Nursultanov, E. ;
Tikhonov, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) :171-184