Novel Atmospheric Pressure Inductively Coupled Micro Plasma Source Using Floating Wire Electrode

被引:16
作者
Kumagai, Shinya [1 ]
Matsuyama, Hiroki [1 ]
Yokoyama, Yoshihiro [1 ]
Hori, Masaru [2 ]
Sasaki, Minoru [2 ]
机构
[1] Toyota Technol Inst, Dept Adv Sci & Technol, Nagoya, Aichi 4688511, Japan
[2] Nagoya Univ, Dept Elect Engn & Comp Sci, Nagoya, Aichi 4648603, Japan
关键词
MICROPLASMA JET; SCALE PLASMA; EMISSION-SPECTROMETRY; GAS-CHROMATOGRAPHY; DISCHARGE; ELEMENTS; CHIP;
D O I
10.1143/JJAP.50.08JA02
中图分类号
O59 [应用物理学];
学科分类号
摘要
A novel atmospheric pressure inductively coupled micro-plasma (ICMP) source is proposed. The gas flow channel is prepared inside the center of the U-shaped Cu electrode of a one-turn antenna coil. The plasma region is the center linear trench designed for the optical coupling with the slit aperture of the spectrometer. A floating wire electrode is first placed inside the trench of the gas channel without the wired connection to the power source. A glass window plate covers the gas channel allowing the optical emission from the linear trench. Under He gas flow, the plasma ignites at similar to 18 W of 100 MHz very high frequency (VHF) power, and the optical emission increases with the power. Without the floating wire electrode, the plasma does not ignite even at 200 W. The floating wire electrode enhances the ignition. The characteristics of the floating wire electrode and the ICMP source are described. (C) 2011 The Japan Society of Applied Physics
引用
收藏
页数:6
相关论文
共 32 条
[1]  
Akatsuka H., 2010, DENKI GAKKAI RONBU A, V130, P892
[2]   Analytical chemistry - Plasma bubbles detect elements [J].
Broekaert, Jose A. C. .
NATURE, 2008, 455 (7217) :1185-1186
[3]   The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications [J].
Bussiahn, R. ;
Brandenburg, R. ;
Gerling, T. ;
Kindel, E. ;
Lange, H. ;
Lembke, N. ;
Weltmann, K-D ;
von Woedtke, Th ;
Kocher, T. .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[4]   Micromachined chip-scale plasma light source [J].
Carazzetti, P. ;
Renaud, Ph. ;
Shea, H. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 154 (02) :275-280
[5]   Capacitively coupled microplasma for on-column detection of chromatographically separated inorganic gases by optical emission spectrometry [J].
Guchardi, R ;
Hauser, PC .
JOURNAL OF CHROMATOGRAPHY A, 2004, 1033 (02) :333-338
[6]   A microfabricated atmospheric-pressure microplasma source operating in air [J].
Hopwood, J ;
Iza, F ;
Coy, S ;
Fenner, DB .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (11) :1698-1703
[7]   Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets [J].
Ichiki, T ;
Taura, R ;
Horiike, Y .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (01) :35-39
[8]   An atmospheric-pressure microplasma jet source for the optical emission spectroscopic analysis of liquid sample [J].
Ichiki, T ;
Koidesawa, T ;
Horiike, Y .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (04) :S16-S20
[9]   Maskless etching of microstructures using a scanning microplasma etcher [J].
Ideno, T ;
Ichiki, T .
THIN SOLID FILMS, 2006, 506 :235-238
[10]   New Compact Continuous Spectrum Light Source Using Atmospheric Pressure Microplasma with High-Velocity Ar Gas Flow [J].
Ito, Haruhiko ;
Kano, Hiroyuki ;
Hori, Masaru .
APPLIED PHYSICS EXPRESS, 2008, 1 (10) :1060011-1060013