On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation

被引:9
作者
Bruzon, M. S. [1 ]
Recio, E. [1 ]
Garrido, T. M. [1 ]
Marquez, A. P. [1 ]
de la Rosa, R. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, POB 40, Cadiz 11510, Spain
关键词
conservation laws; exact solutions; multiplier method; partial differential equations; symmetries; SOLITARY WAVES; COMPACTONS; SOLITONS;
D O I
10.1002/mma.4829
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for the Cooper-Shepard-Sodano equation, some conservation laws are obtained by applying the multiplier method. Furthermore, we study this equation from the point of view of Lie symmetries. We perform an analysis of the symmetry reductions taking into account the similarity variables and the similarity solutions, which allow us to transform our equation into ordinary differential equations.
引用
收藏
页码:7325 / 7332
页数:8
相关论文
共 24 条
  • [1] Adem KR, 2015, MATH PROBL ENG, V2015, P1
  • [2] Direct construction method for conservation laws of partial differential equations - Part II: General treatment
    Anco, SC
    Bluman, G
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 : 567 - 585
  • [3] Anco SC, 1905, EUR J APPL MATH, V13, P545
  • [4] Anco SC, 2017, FIELDS I COMMUN, V79, P119, DOI 10.1007/978-1-4939-6969-2_5
  • [5] Anderson R.L., 1979, SIAM Studies in Applied Mathematics
  • [6] Bender CM, 2009, PRAMANA-J PHYS, V73, P375, DOI 10.1007/s12043-009-0129-1
  • [7] Classical and nonclassical symmetries of a generalized Benney-Luke equation
    Bruzon, M. S.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (28-29):
  • [8] Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation
    Bruzon, Maria S.
    Recio, Elena
    Garrido, Tamara M.
    Marquez, Almudena P.
    [J]. OPEN PHYSICS, 2017, 15 (01): : 433 - 439
  • [9] Double compactons in the Olver-Rosenau equation
    Chen, Aiyong
    Wen, Shuangquan
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (03): : 471 - 478
  • [10] SOLITARY WAVES IN A CLASS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS
    COOPER, F
    SHEPARD, H
    SODANO, P
    [J]. PHYSICAL REVIEW E, 1993, 48 (05): : 4027 - 4032